Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2023

Emerging investigator series: Differential effects of carbon nanotube and graphene on the tomato rhizosphere microbiome

Yaqi You,^{1,2,†} Patricia Kerner,² Sudha Shanmugam,³ Mariya V. Khodakovskaya³

¹Department of Environmental Resources Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, USA ²Department of Biological Sciences, Idaho State University, Pocatello, ID, USA ³Department of Biology, University of Arkansas at Little Rock, Little Rock, AR, USA

[†]Correspondence: Yaqi You 402 Baker Lab, 1 Forestry Dr, Syracuse, NY 13210 Email: <u>yyou@esf.edu</u> Phone: +1-315-470-6765

Number of Pages: 25 Number of Figures: 9 Number of Tables: 4

Materials and Methods

Soil physicochemical property analyses

Tomato plants were grown in soils receiving either carbon nanotube (CNT) or graphene treatment, with appropriate controls included in each exposure experiment (6 biological replicates x 2 carbon nanomaterials (graphene or CNT) x 2 conditions (treatment or control) = 24 pots in total). After the exposure experiment, tomato plants were carefully removed. Bulk soil was mixed within each of the experimental pots.

For each carbon nanomaterial (CNM) and experimental condition, bulk soils from three replicate pots were mixed in equal amounts and analyzed for soil properties at the Environmental Analytical Laboratory, Brigham Young University (Provo, UT) using established protocols (https://pws.byu.edu/eal). Briefly, pH and electrical conductivity (EC) were measured using meters on a saturated soil paste. Ammonium (NH_4 -N) and nitrate (NO_3 -N) were extracted with 2 M potassium chloride (KCI) and measured on a Rapid Flow Analyzer (Quick Chem 8500, Lachat Instruments, Loveland, Colorado, USA). Cation exchange capacity (CEC) was measured with the ammonium replacement method on the same instrument. Organic matter (OM; in %) was measured by dichromate oxidation. Total C (%) and N (%) were determined based on combustion on an element analyzer (TruSpec CN Determinator, LECO Instruments, MI, USA). Phosphorus (P) was extracted with 0.5 M sodium bicarbonate (NaHCO₃) according to Olsen's method.¹ Exchangeable potassium (K) was extracted with ammonium acetate, sulfate (SO₄-S) was extracted with monocalcium phosphate, and micronutrients zinc (Zn), iron (Fe), manganese (Mn) and copper (Cu) were extracted with diethylenetriamine pentaacetate (DTPA). The extracted analytes were measured by inductively coupled plasma optical emission spectrometry (ICP-OES) (iCAP 7400, Thermo Electron, WI, USA). Calcium carbonate (CaCO₃) was measured according to Allison et al. (1965).² We chose extraction methods over total digestion methods in order to focus on bioavailable chemicals.

Soil basal respiration assessment

To evaluate CNM effects on the functionality of the soil microbial community, we first performed EcoPlate assay to compare substrate utilization patterns in bulk soils harvested at the conclusion of the exposure experiment (detailed in the main text). Next we used a microcosm setup to measure soil basal respiration (Figure S1). Bulk soil collected from a pot was thoroughly mixed and 10 grams were transferred to a sterile 50 mL amber serum bottle. The water content was maintained at 11% (w/w), a typical field capacity, using sterile Milli-Q water. Each serum bottle was sealed with a rubber septum and aluminum crimp, and incubated

for 1 hour in a growth chamber (model A1000, Conviron, Winnipeg, Canada) at 25 °C and under 50% humidity. Gas accumulated in bottle headspace was sampled using a 30 mL polypropylene syringe and immediately injected into an EGM-4 gas analyzer (PP systems, Amesbury, MA) for CO_2 measurement. Ambient CO_2 level was measured before each sampling to ensure analytical consistency.

Figure S1. Serum bottle microcosm for bulk soil respiration potential assessment. Bottles were incubated for 1 hour in a controlled growth chamber.

Results and Discussion

Changes in soil property due to carbonaceous nanomaterials (CNMs)

It should be noted that the CNT and graphene experiments were conducted using two different soils. Comparisons between bulk soils harvested from the control and treatment pots showed CNT and graphene treatment resulted in differential changes in soil property (Table S1).

Table S1. Properties of bulk soils from the control and treatment pots. After the removal of plant, bulk soil was mixed in the original pot and representative bulk soils from three replicate pots under each condition were mixed and analyzed for extractable chemicals. Relative changes higher than 50% were highlighted in bold.

	CNT.control	CNT	Relative change	Graphene.control	Graphene	Relative change
рН	6.66	6.54	-1.8%	6.09	6.06	-0.5%
EC (dS/m)	0.4	0.7	73.8%	0.7	0.8	15.4%
CEC (meq/100g)	67.3	56.1	-16.7%	66.1	75.7	14.5%
OM (%)	32.2	31.8	-1.1%	34.2	44.3	29.6%
Total C (%)	15.3	16.2	6.3%	14.3	18.1	26.5%
Total N (%)	0.420	0.444	5.7%	0.460	0.490	5.4%
NO ₃ -N (ppm)	9.0	10.9	21.4%	2.74	3.17	15.7%
NH₄-N (ppm)	8.1	7.9	-2.6%	22.3	26.0	16.5%
C:N	36.4	36.6	0.5%	31.0	37.1	20.0%
P (ppm)	34.6	34.0	-1.5%	33.2	20.9	-37.2%
K-av (ppm)	655	570	-12.9%	391	342	-12.7%
SO₄-S (ppm)	20.3	71.2	250.1%	589	593	0.7%
CaCO ₃ (%)	7.20	2.98	-58.6%	0.99	1.50	52.1%
Zn (ppm)	0.17	0.22	25.8%	5.96	5.70	-4.4%
Fe (ppm)	27.90	13.99	-49.9%	149	142	-4.4%
Mn (ppm)	1.96	1.33	-32.0%	3723	3559	-4.4%
Cn (ppm)	0.26	0.33	27.2%	93086	88984	-4.4%

CNT affected more taxa of tomato-associated soil microbiomes

Figure S2. Effects of CNT (left) and graphene (right) on the relative abundance of the top 20 classes in the bulk soil and the tomato rhizosphere. Data were averaged among the biological replicates in each experiment.

Table S2. LEfSe identified differential taxa at the phylum or class level that were most likely to explain CNM-induced microbiome shifts. Asterisks indicate differential taxa common in bulk soil and the rhizosphere in either the CNT or graphene experiment. Taxa seen under both CNT and graphene treatment are in bold.

Treetment	Colleana		Enriched	Suppressed			
Treatment	3011 2011e	phylum	class (phylum in parentheses)	phylum	class (phylum in parentheses)		
		Latescibacterota	*Blastocatellia (Acidobacteriota)	*BD2-11 terrestrial group	Bathyarchaeia (Crenarchaeota)		
		*WS2	Subgroup 5 (Acidobacteriota)		Acidobacteriae (Acidobacteriota)		
			Vicinamibacteria (Acidobacteriota)		Holophagae (Acidobacteriota)		
			Acidimicrobiia (Actinobacteriota)		Coriobacteriia (Actinobacteriota)		
			*Kapabacteria (Bacteroidota)		*Vampirivibrionia (Cyanobacteria)		
			Dehalococcoidia (Chloroflexi)		Desulfobulbia (Desulfobacterota)		
			JG30-KF-CM66 (Chloroflexi)		*Desulfovibrionia (Desulfobacterota)		
			*KD4_96 (Chloroflexi)		Syntrophia (Desulfobacterota)		
			Lineage IIb (Elusimicrobiota)		Syntrophobacteria (Desulfobacterota)		
CNT	Bulk soil		Candidate division WWE3 (Patescibacteria)		Syntrophobacteria (Desulfobacterota)		
			Chlamydiae (Verrucomicrobiota)		Bacillia (Firmicutes)		
					*Clostridia (Firmicutes)		
					Desulfotomaculia (Firmicutes)		
					Limnochordia (Firmicutes)		
					Negativicutes (Firmicutes)		
					Gemmatimonadetes		
					CPR2 (Patescibacteria)		
					Planctomycetes (Planctomycetota)		
					Spirochaetia (Spirochaetota)		

		*WS2	*Blastocatellia (Acidobacteriota)	*BD2-11 terrestrial group	*Vampirivibrionia (Cyanobacteria)
			Thermoleophilia (Actinobacteriota)		*Desulfovibrionia (Desulfobacterota)
			Armatimonadia (Armatimonadota)		*Clostridia (Firmicutes)
	Dhizoonhoro		*Kapabacteria (Bacteroidota)		
	Knizosphere		*KD4_96 (Chloroflexi)		
			OLB14 (Chloroflexi)		
			Saccharimonadia (Patescibacteria)		
			Alphaproteobacteria (Proteobacteria)		
			Fimbriimonadia (Armatimonadota)		Vampirivibrionia (Cyanobacteria)
	Bulk soil		bacteriap25 (Myxococcota)		Nitrospiria (Nitrospirota)
			Leptospirae (Spirochaetota)		
Graphene			Abditibacteria (Abditibacteriota)		Bdellovibrionia (Bdellovibrionota)
			Subgroup 11 (Acidobacteriota)		Dabacteriia (Dadabacteria)
	Rillzuspilere		Polyangia (Myxococcota)		Planctomycetes (Planctomycetota)
			Berkelbacteria (Patescibacteria)		Sumerlaeia (Sumerlaeota)

CNT enhanced microbial interactions in the tomato rhizosphere

Figure S3. Effects of CNT on the class-level microbial network in the bulk soil and the tomato rhizosphere. Networks were calculated based on Bray-Curtis distance with a maximum distance of 0.3.

Figure S4. Effects of graphene on the class-level microbial network in the bulk soil and the tomato rhizosphere. Networks were calculated based on Bray-Curtis distance with a maximum distance of 0.3.

Figure S5. In the CNT experiment, soil zone (A, B) and treatment (C, D) are both significant factors shaping microbial network in the bulk soil and the tomato rhizosphere. (A, C) Nearest neighbor (NN) tree constructed on Bray-Curtis distance of agglomerated ASV abundance (to the phylum level) among treatment conditions (nodes). If from the same condition, nodes are connected by solid edges (pure), otherwise they are connected by dashed lines (mixed). Color denotes experimental condition. (B, D) Graph-based permutation test (n = 9999) on the nearest neighbor tree, p < 0.002 for both soil zone and treatment.

Figure S6. In the graphene experiment, soil zone (A, B) but not treatment (C, D) is a significant factor shaping microbial network in the bulk soil and the tomato rhizosphere. (A, C) Nearest neighbor (NN) tree constructed on Bray-Curtis distance of agglomerated ASV abundance (to the phylum level) among treatment conditions (nodes). If from the same condition, nodes are connected by solid edges (pure), otherwise they are connected by dashed lines (mixed). Color denotes experimental condition. (B, D) Graph-based permutation test (n = 9999) on the nearest neighbor tree, p < 0.001 for soil zone and p = 0.864 for treatment.

CNT-induced microbial functional changes

We used PICRUSt2 to infer microbial functions. The resulting NSTI values ranged from 0.135 to 0.258 for all the samples, suggesting a mid-range prediction accuracy typical for soil samples.³ Rhizosphere samples showed smaller NSTI values than bulk soil samples (p < 0.002 in PERMANOVA after controlling treatment conditions), consistent with generally greater microbial diversity in bulk soil. Enriched pathways and modules were identified by DESeq2 in MicrobiomeAnalyst.^{4,5} We chose DESeq2 because it uses shrinkage estimation for dispersions and fold changes for improved stability and interpretability of estimates, which enables a more quantitative analysis focused on the strength rather than the mere presence of differential presence.⁴

EcoPlate assay was used to compare community-level metabolism and substrate use patterns in bulk soils at the conclusion of the exposure experiment. After soil sample inoculation, we continuously monitored average well-color development (AWCD) for ~170 hours (Figure S8). AWCD values of the samples reached plateau after 7 days. Therefore, the final AWCD readings were used for calculation and cross-sample comparison. Soil basal respiration was also estimated for bulk soil samples (Figure S9). CNT treatment significantly increased basal respiration in bulk soils (p < 0.03 in ANOVA followed by Tukey's HSD). Graphene did not have significant effect on basal soil respiration in bulk soils.

Table S3. CNT-induced changes in microbial functional pathways in bulk soil and the tomato rhizosphere. Functional inference was conducted using PICRUSt2.

Soil zone	Pathway	Total	Expected	Hits	<i>P</i> -value	FDR	KO Hits
Bulk soil	Nitrogen metabolism	49	2.060	10	0.0000248	0.00392	K03385 K02588 K15876 K05601 K02586 K02591 K15371 K00376 K01915 K01674
	Amino sugar and nucleotide sugar metabolism	126	5.300	13	0.00205	0.162	K02795 K02796 K02794 K00844 K02564 K12454 K00849 K01209 K01809 K01809 K00963 K10012 K16011 K02377
	Fructose and mannose metabolism	88	3.700	10	0.00336	0.177	K02795 K02796 K02794 K00844 K07046 K02770 K01809 K00895 K16011 K02377

	Chloroalkane and chloroalkene degradation	28	1.180	5	0.00548	0.216	K02588 K02586 K02591 K00121 K00114
	Pyruvate metabolism	86	3.620	9	0.00917	0.290	K00625 K00626 K01067 K00656 K01571 K01960 K01596 K01573 K01069
Bulk soil	Ascorbate and aldarate metabolism	38	1.600	5	0.020	0.484	K02822 K13875 K00469 K13876 K03077
	Fatty acid degradation	39	1.640	5	0.0222	0.484	K00626 K06445 K00121 K01692 K00249
	Carbon fixation pathways in prokaryotes	101	4.250	9	0.0245	0.484	K00625 K00626 K00176 K00198 K15022 K01960 K00196 K00242
	Sulfur metabolism	74	3.110	7	0.0341	0.516	K01011 K00956 K08354 K08352 K00380 K00955 K01082

	Fatty acid metabolism	60	2.520	6	0.0384	0.516	K00626 K06445 K16363 K01692 K00249 K01716
	Porphyrin and chlorophyll metabolism	76	3.200	7	0.0387	0.516	K04040 K03428 K04037 K04038 K04039 K10960 K03403
Bulk soil	Methane metabolism	147	6.180	11	0.0427	0.516	K00625 K12234 K03388 K11212 K00121 K00198 K15022 K00196 K03390 K11261 K02203
	Biosynthesis of amino acids	223	9.380	15	0.0446	0.516	K01914 K11358 K05825 K05822 K05823 K13853 K17462 K14155 K01960 K01243 K01915 K02502 K03785 K14682 K02203
Rhizosphere	Toluene degradation	38	1.63	15	9.70E-12	1.53E-09	K16242

							K16243
							K16244
							K16245
							K16246
							K16249
							K00141
							K05797
							K07540
							K07543
	Toluono degradation						K07545
							K07547
							K07548
							K07549
							K07550
							K04072
							K16242
							K16243
							K16244
							K16245
Phizosphere							K16246
1111205pilere							K07537
							K16249
							K00141
							K10216
							K05712
							K05783
	Degradation of aromatic compounds	171	7 35	26	5 955-09	4 70E-07	K04108
	Degradation of aromatic compounds	17.1	7.55	20	0.90L-09	4.700-07	K07540
							K18074
							K18076
							K07536
							K16050
							K07543
							K07545
							K07547
							K07548
							K07549
							K07550
							K16049
							K05550

							K04098 K16242 K16243 K16244 K16245 K16246
	Benzoate degradation	82	3.53	17	3.22E-08	1.69E-06	K07537 K16249 K04110 K10216 K05783 K10221 K04108 K01615 K07536 K05550 K04100
Rhizosphere	Steroid degradation	9	0.387	4	0.000348	0.0115	K16050 K05898 K16049 K15982
	Chlorocyclohexane and chlorobenzene degradation	33	1.42	7	0.000389	0.0115	K04098 K16242 K16243 K16244 K16245 K16246 K16249
	Methane metabolism	147	6.32	16	0.000438	0.0115	K00196 K01007 K03389 K05979 K03390 K11781 K11780 K16792 K00148 K11212 K12234 K00198

							K15022
							K03388
							K18277
							K03841
							K01912
							K10775
							K11358
							K05712
		70	3.27	10	0.0012	0.0004	K02614
	Phenylalanine metabolism	76		10	0.0013	0.0294	K02610
							K02611
							K02612
							K02609
							K02613
	Aminobenzoate degradation						K00141
							K04110
Rhizosphere		35	1.51	5	0.0157	0.309	K10221
							K04108
							K04100
							K05928
							K03182
	Ubiquinone and other terpenoid-quinone	50	0.15	6	0.0190	0 222	K09833
	biosynthesis	50	2.15	0	0.0109	0.332	K09834
	-						K18534
							K12073
							K09835
	Carotenoid biosynthesis	28	1 2	1	0.030	0 474	K02293
	Carolenold biosynthesis	20	1.2	4	0.050	0.474	K14605
							K14606
							K00141
	Xylene degradation	32	1 38	Δ	0.0462	0.659	K10216
	Aylene degradation		1.38	7			K05783
							K05550

Table S4. CNT-induced changes in microbial functional modules in bulk soil and the tomato rhizosphere. Functional inference was conducted using PICRUSt2.

Soil zone	Module	Total	Expected	Hits	P-value	FDR	KO Hits
	Nitrogen fixation, nitrogen => ammonia	4	0.170	3	0.000282	0.067	K02588 K02586 K02591
	Assimilatory sulfate reduction, sulfate => H_2S	10	0.424	3	0.00704	0.830	K00956 K00380 K00955
	Methanogenesis, acetate => methane	13	0.552	3	0.0153	0.944	K00625 K03388 K03390
	F ₄₂₀ biosynthesis	6	0.255	2	0.0238	0.944	K12234 K11212
Bulk soil	Incomplete reductive citrate cycle, acetyl- CoA => oxoglutarate	17	0.721	3	0.0323	0.944	K00176 K00177 K01960
	Nucleotide sugar biosynthesis, glucose => UDP-glucose	7	0.297	2	0.0324	0.944	K00844 K00963
	Cysteine biosynthesis, methionine => cysteine	7	0.297	2	0.0324	0.944	K17462 K01243
	Ascorbate degradation, ascorbate => D- xylulose-5P	7	0.297	2	0.0324	0.944	K02822 K03077
	Methanogenesis, CO2 => methane	19	0.806	3	0.0433	0.944	K03388 K03390 K11261
	beta-Oxidation	19	0.806	3	0.0433	0.944	K06445 K01692 K00249
Rhizosphere	Benzene degradation, benzene => catechol	6	0.303	6	1.34E-08	2.42E-06	K16242 K16243 K16244 K16245 K16246 K16249
	Toluene degradation, anaerobic, toluene => benzyl-CoA	9	0.454	7	2.05E-08	2.42E-06	K07540 K07543 K07545

						K07547
						K07548
						K07549
						K07550
						K05928
Teeenhevel bises with sois		0.050	4		0.00000	K09833
rocopherol biosynthesis	5	0.252	4	2.87E-05	0.00226	K09834
						K18534
						K11781
	6	0.000	4		0.00400	K11780
F ₄₂₀ biosynthesis	0	0.303	4	8.28E-05	0.00489	K11212
						K12234
						K03389
Methanogenesis, methanol => methane	9	0.454	3	0.00831	0.392	K03390
						K03388
Benzoate degradation, benzoate =>						K05783
catechol / methylbenzoate =>	4	0.202	2	0.0141	0.476	K05765
methylcatechol						R05550
Terephthalate degradation, terephthalate =>	1	0 202	2	0.01/1	0.476	K18074
3,4-dihydroxybenzoate	4	0.202	2	0.0141	0.470	K18076
						K03389
Methanogenesis, acetate => methane	13	0.656	3	0.0245	0.641	K03390
						K03388
Methanogenesis,						K03389
methylamine/dimethylamine/trimethylamine	13	0.656	3	0.0245	0.641	K03390
=> methane						K03388
beta-Carotene biosynthesis, GGAP =>	6	0 303	2	0.033	0 770	K09835
beta-carotene	0	0.303	Z	0.033	0.779	K02293
Reductive pentose phosphate cycle,	7	0.353	2	0.0447	0.06	K00150
ribulose-5P => glyceraldehyde-3P	1	0.555	۷	0.0447	0.90	K01602

Figure S7. CNT effects on F₄₂₀ biosynthesis in the tomato rhizosphere. K11212: *cofD* gene encoding 2-phospho-L-lactate transferase; K12234: *cofE* gene encoding coenzyme F420:L-glutamate ligase; K11780: *cofG* encoding 7,8-didemethyl-8-hydroxy-5-deazariboflavin synthase; K11781: *cofH* gene encoding 5-amino-6-(D-ribitylamino)uracil-L-tyrosine 4-hydroxyphenyl transferase.⁶

Figure S8. AWCD of bulk soils harvested by the end of the CNT or graphene experiment. Data points represent average across 3 technical replicates and 3-4 biological replicates; bars represent standard deviation.

Figure S9. (A) Ambient CO_2 measured at the time of soil respiration assessment. No significant difference was observed among measurements. (B) Soil basal respiration rate (hourly CO_2 generation) in the treated and untreated soils. Letters indicate statistical significance (*p* < 0.03 in ANOVA followed by Tukey's HSD).

References

1. S. R. Olsen, Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939), US Department of Agriculture, 1954.

2. L. E. Allison and C. D. Moodie, Carbonate. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 1965, **9**, 1379-1396.

3. G. M. Douglas, V. J. Maffei, J. R. Zaneveld, S. N. Yurgel, J. R. Brown, C. M. Taylor, C. Huttenhower and M. G. Langille, PICRUSt2 for prediction of metagenome functions, *Nat. Biotechnol.*, 2020, **38**, 685-688.

4. M. I. Love, W. Huber and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, *Genome Biol.*, 2014, **15**, 1-21.

5. J. Chong, P. Liu, G. Zhou and J. Xia, Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data, *Nat. Protoc.*, 2020, **15**, 799-821.

6. R. Grinter and C. Greening, Cofactor F420: An expanded view of its distribution, biosynthesis and roles in bacteria and archaea, *FEMS Microbiol. Rev.*, 2021, **45**, fuab021.