Supporting Information

Significant improvement and mechanism of tetracycline degradation with synergistic piezoelectric effect of ZnO/CuS Zscheme heterojunction photocatalyst

Qi Gao ^a, Luping Zhou ^a, Shuai Xu ^a, Shuqi Dai ^b, Qi Zhu ^a and Yuliang Li ^{*a}

^a Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region,
 Ministry of Education, School of Water and Environment, Chang'an University, Xi'an,
 710064, China

^b South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, China

* E-mail: yulianglee@hotmail.com

Fig. S1 SEM image of CuS

Fig. S2 SEM image of (a) ZC-12, (b) ZC-10, (c) ZC-1 and (d) ZC-0.67

Fig. S3 EDS elemental microanalysis of ZC-10

Fig. S4 UV-Vis absorption spectra of CuS

Fig. S5 (a) Cycling experiment of ZC-10 piezo-photocatalytic degradation of TC and (b) XRD

spectra before and after Cycling

Fig. S6 Piezo-photocatalytic degradation of TC in different water matrices over ZC-10

Fig. S7 Mass spectra of the TC and intermediates eluted at different reaction time

Sample	$S_{BET} \left(m^2/g \right)$	Pore Volume (cm ³ g ⁻¹)	Pore diameter (nm)	
ZnO	11.805	0.04287	3.370	
CuS	17.983	0.06115	3.925	
ZC-10	26.118	0.01253	3.465	

Table S1 Textural properties of ZnO, CuS and ZC-10 samples

Photocatalyst	Degraded organic	Dosage	Degradation	Degradatio	Degradatio	Ref.
	pollutants	(mg/L)	concentration(mg/L)	n time(min)	n rate	
ZnO	MB	1000	5	120	93%	
	RhB	1000	5	120	90%	[1]
	ТВ	1000	5	120	81%	
AgI/ZnO	RhB	200	10	80	96.4%	
	МО	200	10	100	95.8%	[2]
	TC	200	10	120	94.7%	
ZnO@TiO ₂	МО	1000	10	120	88%	[3]
CuS/ZnO	MB	2000	5	90	100%	[4]
Bi ₂ WO ₆ /g-		1000	5	20	95.1%	[5]
C ₃ N ₄ /ZnO	KIID					
ZnO/Al ₂ O ₃	МО	100	50	120	81.3%	[6]
ZnO/BaTiO ₃	RhB	1000	10	90	100%	[7]
FeS/ZnO	МО	1000	10	50	97%	[8]
ZnO/CuS	ТС	400	30	60	85.28%	This work

Table S2 Piezo-photocatalysts degradation of organic pollutants reported in literatures.

References:

[1] Y. Chimupala, C. Phromma, S. Yimklan, N. Semakul and P. Ruankham, Dye wastewater treatment enabled by piezo-enhanced photocatalysis of single-component ZnO nanoparticles, *RSC Adv.*, 2020, 10, 28567-28575.

[2] J. Liu, J. Chen, Z. Wu, K. Zhu, J. Wang, Z. Li, G. Tai, X. Liu and S. Lu, Enhanced visible-light photocatalytic performances of ZnO through loading AgI and coupling piezo-photocatalysis, *J. Alloys Compd.*, 2021, 852.

[3] H. You, Z. Wu, Y. Jia, X. Xu, Y. Xia, Z. Han and Y. Wang, High-efficiency and mechano-/photo-bi-catalysis of piezoelectric-ZnO@photoelectric-TiO₂ core-shell nanofibers for dye decomposition, *Chemosphere*, 2017, 183, 528-535.

[4] D. Hong, W. Zang, X. Guo, Y. Fu, H. He, J. Sun, L. Xing, B. Liu and X. Xue, High Piezo-photocatalytic Efficiency of CuS/ZnO Nanowires Using Both Solar and Mechanical Energy for Degrading Organic Dye, ACS Appl. Mater. Inter., 2016, 8, 21302-14.

[5] Z. Kang, K. Ke, E. Lin, N. Qin, J. Wu, R. Huang and D. Bao, Piezoelectric

polarization modulated novel $Bi_2WO_6/g-C_3N_4/ZnO$ Z-scheme heterojunctions with g-C₃N₄ intermediate layer for efficient piezo-photocatalytic decomposition of harmful organic pollutants, *J. Colloid. Interf. Sci.*, 2022, 607, 1589-1602.

[6] Q. Nie, Y. Xie, J. Ma, J. Wang and G. Zhang, High piezo-catalytic activity of ZnO/Al₂O₃ nanosheets utilizing ultrasonic energy for wastewater treatment, *J. Clean. Prod.*, 2020, 242.

[7] X. Zhou, S. Wu, C. Li, F. Yan, H. Bai, B. Shen, H. Zeng and J. Zhai,
Piezophototronic effect in enhancing charge carrier separation and transfer in
ZnO/BaTiO₃ heterostructures for high-efficiency catalytic oxidation, *Nano Energy*, 2019,
66.

[8] X. Guo, Y. Fu, D. Hong, B. Yu, H. He, Q. Wang, L. Xing and X. Xue, Highefficiency sono-solar-induced degradation of organic dye by the piezophototronic/photocatalytic coupling effect of FeS/ZnO nanoarrays, *Nanotechnology*, 2016, 27, 375704.