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Figure S1. Determination of non-lethal concentration of ROS scavenger, thiourea (TU) in 
cultures of S. oneidensis. (a) Thiourea concentration range from 1 to 125 mM and (b) 
thiourea concentration in lower concentration range of 0.01 to 1000 µM. 
 
 

 
Figure S2. Flow cytometry data of DCFDA-stained cells of NMC-unexposed (WT) and 
NMC-exposed cultures (three biological replicates) at passage C and D. 
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Figure S3. Flow cytometry data of DCFDA stained cells of ion-exposed and NMC-
exposed cultures at passage D. 
 

 
 
 
Figure S4. Flow cytometry data of HPF-stained cells of NMC-unexposed (WT) and NMC-
exposed cultures (three biological replicates) at passage C and D comparing hydroxyl 
radical levels. 
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Figure S5. (a) Standard curve for H2O2 concentration using Amplex Red assay, as per 
manufacture’s protocol. The H2O2 standard curve was plotted every time for all passages 
and likewise a straight-line equation was plotted for calibration. (b) Concentration of H2O2 
as measured from NMC dispersed in minimal media over 72 hr, with measurements every 
24 hr. 
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Figure S6. Determination of H2O2 concentration in passage A to passage C for 
unexposed/NMC/Ion eqv.-exposed cultures in the presence and absence of H2O2 
scavenger dimethyl thiourea (DMTU). (a) Passage A, (b) passage B, (c) passage C and 
(d) comparison of H2O2 concentration due to NMC only, ions only with respect to when 
NMC/ion eqv.-exposed to the cells in cultures. Significance calculated using unpaired t-
test where **, ***indicate p ≤ 0.01, p ≤ 0.001, respectively. 
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Figure S7. DCFDA-stained fluorescence imaging of NMC-exposed passage D cells. (a) 
Comparison of relative fluorescence intensity per unit length of cells binned according to 
their total cell length, (b–m) presence of vesicles in the bright field images as well as with 
DCFDA fluorescence. 
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Figure S8. Graph showing percentage of vesicles from NMC exposed cultures, stained 
with DCFDA (for ROS), Hoechst (for DNA), RADA (for peptidoglycan) from the total 
vesicles (n>50) observed during the study.  
 
 

 
 
Figure S9. Comet assay bacterial tail length analysis in violin plot shows no significant 
changes in the extent of DNA double strand breakage in S. oneidensis in the presence of 
0.10 mM thiourea (WT+TU) using the Kruskal-Wallis test followed by Dunn’s multiple 
comparisons test. The dash line in the violin plot denotes the average and the dotted lines 
represent the quartiles (n > 90).  
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Figure S10. Resister generation frequency of cells as determined by plating on (a) 25 
mg/L rifampicin and (b) 50 mg/L erythromycin. 
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Table S1. Point mutations in the gyrA gene from colonies on nalidixic acid plates. 
 
Primer Specificity Sequence 
Primer-QRDR-F QRDR (gryA) 5'-gtgggacgtgcattaccaga 
Primer-QRDR-R QRDR (gryA) 5'-tgcaatacccgatgaaccgt 
Primer-Rif-F RRDR (rpoB) 5’-ttctgtgggtgagatggctg 
Primer-Rif-R2 RRDR (rpoB) 5’-cacaccgtctaccactttgc 
Primer-Rif-R1 RRDR (rpoB) 5’-acctactagcggcttttcagag 

 
 
Table S2. Point mutations in the gyrA and rpoB genes from colonies on nalidixic acid 
and rifampicin plates. WT represents passaged control (without nanomaterial) and all 
the sequences were aligned to the sequence from the stock colonies (un-passaged). 
 
Sample Gene Mutation in 

codon 
Amino acid 
change 

Nucleotide 
position 

Amino acid 
position 

WT gyrA TCG to 
TTG 

SER to LEU 248 83 

WT+NMC 1 gyrA TCG to 
TGG 

SER to TRP 248 83 

WT+NMC 2 gyrA TCG to 
TTG 

SER to LEU 248 83 

WT+Ion 1 gyrA TCG to 
TTG 

SER to LEU 248 83 

WT+Ion 2 gyrA TCG to 
TTG 

SER to LEU 248 83 

WT rpoB CGT to 
CTT 

ARG to LEU 1589 530 

WT+NMC 1 
 

rpoB CAT to  
TAT 

HIS to TYR 1579 527 

WT+NMC 2 rpoB CAT to  
TAT 

HIS to TYR 1579 527 

WT+NMC 3 rpoB CAA to 
AAA 

GLN to LYS 1540 514 
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NMC Characterization  
 
NMC powder was prepared for surface area analysis by heating to 120 °C under vacuum 
overnight. BET surface area was then measured via nitrogen adsorption isotherm 
(NovaTouch LX BET surface characteristic analyzer, Quantachrome, Boynton Beach, 
FL.). Results show NMC surface area of ~117 m^2/g. 
 
NMC powder was prepared for XRD analysis by pressing into a B-doped zero background 
diffraction plate (MTI Corp, Richmond, CA). X-ray diffraction pattern was collected 
overnight on a Bruker D8 Advance (Bruker, Billerica, MA). The collected diffraction pattern 
matches the expected layered R-3m crystal structure as evidenced by comparison to 
LiCoO2 [Citation: Kim, H.J.; Jeong, Y.U.; Lee, J.H.; Kim, J.J. Crystal structures, electrical 
conductivities and electrochemical properties of LiCo(1-x)MgxO2 (0 <= x <= 0.11). J. Pow. 
Sources 159 (2006), 233-236]. 
 
To image NMC via SEM, sample powder was suspended in isopropanol via sonication. 
The suspension was then dropcast on a heated B-doped Si wafer. Imaging was 
conducted on a Zeiss 1530 FE-SEM (Zeiss, Oberkochen, Germany) at an accelerating 
voltage of 5 kV. SEM images show flake-like particles with basal planes measuring ~88 
(+/-) 22 nm. 
 
To image NMC via TEM, sample powder was suspended in isopropanol via sonication. 
The suspension was then dropcast on a silicon nitride TEM grid (Ted Pella, Redding, CA). 
Particles were then imaged on a Tecnai T12 TEM (FEI) at an accelerating voltage of 120 
kV. Analysis of particles viewed edge-on show the expected layered structure, with 
average thickness around 10 (+/-) 6 nm. 
 
To determine material composition, 3.3 mg NMC was dissolved into 8 mL of Aqua Regia 
overnight. (Note: Aqua Regia is extremely corrosive and releases toxic gases, use 
extreme caution). An aliquot of the resulting solution was then diluted. The concentrations 
of each metal were then measured using ICP-OES (Agilent 5110, Agilent, Santa Clara, 
CA). Measurements were converted from parts per million to molarity. Composition was 
then determined by dividing the metal concentration by the sum of the nickel, manganese, 
and cobalt concentrations. This led to a composition of Li0.65Ni0.35Mn0.32Co0.33O2. 
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Figure S11. NMC XRD pattern. Collected diffraction pattern matches expected R-3m 
crystal structure.  
 
 

 
Figure S12. Imaging of NMC by SEM.  
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Figure S13. Imaging of NMC by TEM. 
 
 
 


