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Experimental section

Structural characterization

The X-ray powder diffraction (XRD) patterns of the samples were measured with a
Bruker D8 Advance diffractometer, using CuKa radiation. Ultraviolet-Visible (UV-Vis)
absorption spectra of the samples were acquired on Model Shimadzu UV-2700
spectrophotometer using BaSO, as the reference. The morphology and structure of
samples were characterized by a scanning electron microscope (SEM, S-4800, Hitachi)
and a transmission electron microscope (TEM, JEM-2010, JEOL). The thickness of the
samples was analyzed by atomic force microscopy (AFM) on a multimode nanoscope
Vil instrument (Bruker) with mica as the base. The FEI Tecnai G2 S-Twin equipped with
Energy-Dispersive X-ray (EDX) detector was used to acquire elemental analyses of the
samples. The Fourier-transform infrared (FT-IR) spectra were collected with a Thermo
Scientific Nicolet iS50 FT-IR spectrometer, KBr as the diluents. The Raman spectra
were recorded with a Renishaw inVia Confocal Raman spectrometer with a 532 nm
laser as excitation source. X-ray photoelectron spectroscopy (XPS) surveys were
analyzed by using a Kratos-AXIS ULTRA DLD, Aluminum (Mono) as the X-ray source.
Photocatalytic activity evaluation

The activities of the samples were evaluated by photodegradation of TC using a 150
W white-light LED light (28.3 mW/cm?). Firstly, 0.03 g catalysts and TC solution (100
mL, 10 mg L'!) were mixed in a 250 ml beaker under stirring for 30 min in dark to reach
the adsorption-desorption equilibrium. Secondly, the above solution was degraded in

the open beaker for 10 min under visible-light irradiation. Finally, the concentration



of TC was analyzed by the UV-Vis spectrometer (Shimadzu UV-2700).

The procedure of the TOC test was the same as that of TC photodegradation. The
TOC test conditions are as follows: the temperature is 680 °C, the O, pressure is 200 +
10 kPa, and each data point is the average result after three tests. During the
procedure, 15 mL of the solutions were sampled at determined times during the
degradation process and analyzed immediately by the TOC-L (Shimadzu) after
filtration through a 0.22 mm membrane. The TOC removal was calculated using the

following equation:

TOC,-TOC,
TOC removal % = —— — X 100%
TOC,

TOC,: the value of original TOC; TOC;: the value of TOC at determined time.

Recycle experiment was carried out by the same procedure. For each run, the used
photocatalyst was centrifuged and alternately washed with deionized water and
ethanol. After that, it was dried at 80 °C for 4 h.

Hydroxyl radical measurement

The specific method for the hydroxyl radical test was as follows: 0.05 g of the catalyst
was placed in 50 mL of coumarin solution at a concentration of 2 x 10 M. The mixture
was stirred for 30 min before the experiment, to ensure that it reached the
adsorption-desorption equilibrium. After irradiation for 1h under visible-light
irradiation, appropriate amount of the suspension was centrifuged in a 10 mL
centrifuge tube and the supernatant was transferred into a Pyrex glass cell for the
fluorescence measurement of 7-hydroxycoumarin by a spectrofluorometer (Perkin-

Elmer LS55).



Photoelectrochemical and electrochemical measurement

The film electrode was fabricated as follows: firstly, 10 mg of samples, 0.1 mL of Nafion
and 0.9 mL of ethanol were mixed thoroughly to form a slurry. Then the slurry was
coated on the FTO glass electrode (1.0 x 1.0 cm). At last, the coated electrode was
dried at 60 °C for 30 min. Photoelectrochemical (PEC) and electrochemical (EC)
measurements were carried out on the IVIUM V13806 electrochemical workstation
with traditional three-electrode system. The as-prepared sample films were used as
working electrodes in a sealed quartz cell. A platinum plate (99.9%) and saturated KCl
Ag/AgCl electrode were used as the counter electrode and reference electrode,
respectively. 0.2 M NaSO, solution was used as electrolyte. High-purity N, or O,
(99.999%) was employed to bubble through the electrolyte to keep the saturated gas
in the EC experiment. PEC experiments were performed in a quartz cell using a 300 W
xenon lamp with a cut-off filter (A > 420 nm) as the illumination source. Mott-Schottky
plots were implemented at frequencies of 500, 1000, and 1500 Hz. All the experiments
were performed at room temperature (about 25 + 3 °C).

Superoxide radical measurement

*0, species were confirmed by EPR which were carried out on a Bruker EMX plus
model spectrometer operating at the X-band frequency. The reactive ¢0, species
were detected with the assist of DMPO as a spin trap under visible-light irradiation.
The concentration of DMPO was 50 mM and ¢O, were determined in methanol phase.

0, temperature-programmed desorption measurement



Temperature-programmed desorption (TPD) of O, was carried out in a conventional
apparatus by Chemisorption Analyzer (Tp 5080 Chemisorb) equipped with a TCD
detector. About 50 mg of catalysts were pretreated at 110 °C for 1 h under ultra-high-
pure He gas flow with the rate of 30 mL/min. The highly pure O, was introduced at a
constant temperature of 30 °C under the flow rate of 30 mL min? for 1 h. The
physically adsorbed O, was removed by being exposed with ultra-high-pure He at 30
°C for 1 h. Then the temperature was increased to 400 °C with the heating rate of 10
°C min! under ultra-high-pure He. Finally, the desorbed O, was monitored by
Chemisorption Analyzer.

Intermediates measurement

The various intermediates during TC photodegradation were obtained by using a
typical experiment. Adsorption-desorption equilibrium and photocatalytic
degradation process were same with the above photocatalytic activity experiments.
After that, a certain volume liquid was taken out for measurement at regular interval
during the photocatalytic degradation process. The intermediates were detected with
LC-MS/MS (liquid chromatography tandem mass spectrometry) (Xevo TQD, USA)
technique. The fragments of the main reaction intermediate were analyzed through

scan mode.
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Fig. S1. XRD patterns of 2.5BMO and 3.0BMO.
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Fig. S2. SEM, TEM, and HRTEM images of 2.0BMO (a-c) and 4.0BMO (d-f).



Fig. $S3. SEM image of 2.7BMO.
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Fig. S4. AFM images and high profiles of 2.0BMO (a) and 4.0BMO (b).
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Fig. S5. Raman spectra of 2.0BMO, 4.0BMO, and 2.7BMO.
a) [Bidr govn b Mo 3d )
( ) e 164.1 6V /} ( ) 23206V [ 23820V
3 3 koo
< i
= ) =y 2319eV/ 23519‘,
Z & A &
| A AN
158.5 eV /| 163.8 6V 231'7“1? 3& ﬁzsww
J 2.0BMO | W o j\* . %@%_EEMO
154 156 158 160 162 164 166 168 228 230 232 234 236 238
Binding Energy /eV Binding Energy /eV

Fig. S6. Bi 4f (a) and Mo 3d (b) XPS of 2.0BMO, 4.0BMO, and 2.7BMO.
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Fig. S7. The self-degradation activities of TC under visible-light without the

photocatalysts.
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Fig. S8. (a) Photocatalytic activities of TC over 2.5BMO and 3.0BMO under visible-light
irradiation, (b) pseudo-first-order decay curves of xBMO for TC degradation, and (c) k

of xBMO for TC degradation.



210.0k

4.0BMO
|
150.0k -
_5120 0k -
Ch °
= 90.0k Q
& o Qo
60.0k - %oo Q
30.0k /5
0.0, . [
0.0 5.0k 10.0k 15.0k
7' /ohm

Fig. $9. Nyquist plots of 2.0BMO, 4.0BMO, and 2.7BMO.
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Fig. S10. Effects of radical scavengers on photocatalytic degradation of TC over

2.7BMO under visible-light irradiation.
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Fig. S11. XRD patterns (a) and UV-Vis DRS (b) of 2.7BMO and yG/2.7BMO.
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Fig. S12. FS related to the amount of formed hydroxyl radicals of 2.7BMO and

yG/2.7BMO.
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Fig. $13. XRD patterns (a, b) and UV-Vis DRS (c, d) of different samples.



Fig. S15. High-angle annular dark-field scanning TEM images (a), the corresponding

EDX mapping images of Bi (b), Mo (c), and Fe (d) of 0.8FePc/0.3G/2.7BMO.
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Fig. S16. Fe 2p XPS of FePc and 0.8FePc/0.3G/2.7BMO.
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Fig. S17. FS related to the amount of formed hydroxyl radicals of 0.3G/2.7BMO and

zFePc/0.3G/2.7BMO (a), and 2.7BMO and zFePc/2.7BMO (b).
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Fig. S18. Nyquist plots (a) and transient photocurrent densities (b) of different

samples.
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Fig. $19. Pseudo-first-order decay curves (a, c) and k (b, d) of different samples.
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Fig. S20. Pseudo-first-order

irradiation.
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Fig. S22. XRD patterns of 0.8FePc/0.3G/2.7BMO before and after photocatalytic TC

degradation.
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Fig. $23. UV-Vis DRS (a) and K-M function versus photon energy (b) of 2.0BMO and

4.0BMO, Mott-Schottky plots of 2.0BMO (c), and 4.0BMO (d).



Fig. S24. Another possible mechanism of photogenerated charges transfer/separation
and the subsequently induced reactions on dual S-scheme 0.8FePc/0.3G/2.7BMO

heterojunction.
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Fig. S25. Extracted ion chromatogram (EIC) analysis of the intermediate products after

photocatalytic TC degradation over 0.8FePc/0.3G/2.7BMO.



