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Text S1. Materials synthesis. 

Synthesis of N/P–C catalyst. Similar to the synthesis of Fe–N/P1.6–C SAC, 400 

μL (6 mmol) of pyrrole monomer and 737 μL (0.8 mmol) of phytic acid were mixed 

with 2 mL of ethanol/water (v/v = 1:1). 684 mg (3 mmol) of ammonium persulfate was 

dissolved into another 6 mL of ethanol/water (v/v = 1:1). The subsequent steps were 

identical to those for Fe–N/P1.6–C SAC to prepare N, P co-doped porous carbon 

materials, and the resulting samples were named as N/P–C catalyst. 

Synthesis of N–C catalyst. Except for the addition of phytic acid, nitrogen-doped 

porous carbon (NC) was prepared by the same procedure as for N/P–C catalyst. The 

resulting sample was named as N–C catalyst. 

Synthesis of Fe–N–C SAC. For the synthesis of Fe–N–C SAC, 10 mg of 

FeCl3·6H2O and 30 mg of 1,10-phenanthroline were added to 2 mL of ethanol, mixed 

well and added dropwise into 100 mg of N–C. The solution was stirred continuously at 

room temperature until it evaporated. Then, the powder was dried at 80 °C. After drying, 

the powder was calcinated at 700 °C for 2 h under an N2 atmosphere at a heating rate 

of 5 °C/min. The final product was etched with 1 M H2SO4 at 80 °C for 2 h to produce 

Fe–N–C SAC. 

Synthesis of Fe–P–C catalyst. Instead of standing overnight, the samples were 

aged at 70 °C for 2 h under stirring, and then dried at 80 °C overnight, except for the 

addition of pyrrole monomer. Then, only P-doped porous carbon materials were 

prepared by the same procedure as Fe–N/P1.6–C SAC. The obtained sample was named 

as Fe–P–C catalyst. 



6 

 

Synthesis of Fe–N/Pn–C SACs. Consistent with the preparation of Fe–N/P1.6–C 

SAC, the only difference was that phytic acids (0.2, 0.5, 1, and 1.5 mmol) were added 

to obtain catalysts with different N/P ratios (0.4, 1, 2, and 3). 

Text S2. Contributions of diverse ROS to BPA oxidation in Fe–N/Pn–C/PMS systems. 

On the basis of the BPA degradation in the presence of radical scavengers, the 

contributions of diverse ROS to BPA removal in Fe–N/Pn–C/PMS systems were 

determined as follows1: 

λ(• OH&SO4
•−) = [(1 − C/C0)Control − (1 − C/C0)TBA − (1 − C/C0)methanol] × 100% (S1) 

λ(HO2
•/O2

•−) = [(1 − C/C0)Control − (1 − C/C0)p‐BQ] × 100% (S2) 

λ( O2
1 ) = 1 − λ(• OH) − λ(HO2

•/O2
•−) (S3) 

Where [1−(C/C0)Control] stands for the degradation efficiency of BPA in the absence 

of quenching agent, and [1−(C/C0)TBA], [1−(C/C0)methanol] and [1−(C/C0)p-BQ] are the 

degradation efficiency of BPA after adding TBA, methanol, and p-BQ, respectively. 
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Table S1. High performance liquid chromatography (HPLC) operating conditions for organic analysis. 

Compounds 

Wavelength 

(nm) 

Flow rate  

(mL/min) 

Ultrapure 

water 

(%) 

0.2% Acetic 

acid 

(%) 

Acetonitrile 

(%) 

Methanol 

(%) Structural formula 

BPA 276 

1.0 

30 - - 70 

 

Phenol 254 - 40 - 60 
 

IBP 222 25 - 75 - 

 

PHT 225 40 - 60 - 

 

4-CP 280 40   60 

 

2,4-D 284  75  26 
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Table S2. Summary of Fe loading in the Fe–N–C SACs for activating PMS systems. 

Catalyst Loading (wt.%) Reference 

Fe–N/P1.6–C 2.32 This work 

Fe-N/C 0.88 2 

SA-Fe/CN 0.62 3 

SAFe-OCN 0.84 4 

Fe–N–C 0.82 5 

Fe-SAC 0.71 6 

SA-Fe-NC 1.12 7 

Fe-SAC 2.60 8 
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Table S3. Comparison of the BPA degradation over different SACs in the Fenton-like reaction for activating PMS near neutral pH. 

  

Catalyst 

BPA 

(mg/L) 

Catalyst 

dosage 

(g/L) 

PMS 

concentration 

(g/L) 

T 

(°C) 

Removal 

efficiency 

TOF 

(L/(min·g)) 

Ea 

(kJ/mol) Reference 

Fe–N/P1.6–C 20 0.2 0.2 25 98.3% (5 min) 24.49 3.7 This work 

Co–N2 20 0.2 0.2 30 100% (5 min) 3.47 - 1 

Co–N4–C 20 0.1 0.2 25 100% (60 min) 4.52 - 9 

3SACu@NBC 20 0.1 0.4 25 100% (30 min) 1.57 - 10 

FeSA–N–C–20 20 0.15 0.4 - 100% (20 min) 1.6 - 2 

Mn–ISA@CN 20 0.2 0.2 25 100% (6 min) 5.69 - 11 

NiZn@N–G–900 20 0.2 0.2 30 100% (80 min) 2.67 15.75 12 

Cu–N4/C–B 20 0.1 0.2 25 98% (5 min) 5.6 - 

13 Cu–N4/C–P 20 0.1 0.2 25 11% (5 min) 0.08 - 

Cu–N4/C 20 0.1 0.2 25 57% (5 min) 1.02 - 
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Table S4. Comparison on the BPA degradation over different Fe-based nanocatalysts in the Fenton-like reaction. 

Catalyst 

BPA 

(mg/L) 

Catalyst 

dosage 

(g/L) Oxidant 

Oxidant 

concentration 

(mM) pH 

T 

(°C) 

Removal 

efficiency 

TOF 

(L/(min·g)) 

Ea 

(kJ/mol) Reference 

Fe–N/P1.6–C 20 0.1 PMS 0.65 6.8 4 98.3% (5 min) 24.5 3.7 This work 

GS–Fe–NPs 25 0.3 H2O2 1000 6.9 30 95% (140 min) 0.1067 128.8 14 

MIL–101(Fe) 50 0.2 H2O2 10 6.0 30 100% (30 min) 1.75 46 15 

Fe0.8Co2.2O4 20 0.1 PMS 0.65 3.0 30 95% (60 min) 0.49 19.45 16 

FeCA–g-C3N4 20 0.5 H2O2 10 4.0 - 92.5% (30 min) 0.17 - 17 

Fe3+@g-C3N4 20 0.2 PMS 0.65 3.0 - 100% (15 min) 3.02 - 18 

Ag/AgCl/Fh 30 1 H2O2 5 3.0 - 100% (60 min) 0.05 - 19 

CN–Cu(II)–CuAlO2 25 1 H2O2 5 6-7 35 98% (120 min) 0.03 - 20 

Fe–Co–85 20 0.2 H2O2 80 6.0 25 85% (6 min) 0.38 - 21 
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Table S5. Parameters of the obtained water samples. 

 
Secondary 

effluent 

South-to-North 

Water Diversion 

pH 6.56 8.36 

TOC (mg/L) 5.22 3.07 

Cl− (mg/L) 6.05 0.23 

HCO3
− (mg/L) 21.36 - 

SO4
2− (mg/L) 47.62 23.49 
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Fig. S1. SEM images of (a) Fe–N–C and (b) Fe–N/P1.6–C SACs. 
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Fig. S2. XPS survey spectrum for the Fe–N/P1.6–C SAC. 
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Fig. S3. Fe–N contents of N 1s and Fe 2p XPS spectra for the Fe–N/Pn–C SACs. 
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Fig. S4. XPS spectra of (a) Fe 2p and (b) P 2p for the Fe–N/Pn–C SACs. 
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Fig. S5. The ratio of (Fe–N)/(Fe–P) for the Fe–N/Pn–C SACs. 
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Fig. S6. Adsorption of BPA on the Fe SACs in the heterogeneous Fenton-like reaction 

([BPA]0 = 20 mg/L, [Catalyst]0 = 0.1 g/L, pH0 = 6.8, T = 4°C). 
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Fig. S7. Relationship between different P/N ratios of the Fe–N/Pn–C SACs and the 

initial reaction rate for the BPA degradation ([BPA]0 = 20 mg/L, PMS = 0.2 g/L, 

[Catalyst]0 = 0.1 g/L, pH0 = 6.8). 
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Fig. S8. TOC removal during BPA degradation in the Fe SACs/PMS systems ([BPA]0 

= 20 mg/L, PMS = 0.2 g/L, [Catalyst]0 = 0.1 g/L, pH0 = 6.8, T = 4°C). 
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Fig. S9. Comparison of the TOF over the reported nanocatalysts for the BPA 

degradation. 
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Fig. S10. The BPA removal in the presence of inorganic anions (Cl
－
, HCO3

－
, SO4

2－) 

in the Fenton-like reaction over the Fe–N/P1.6–C SAC ([BPA]0 = 20 mg/L, PMS = 0.2 

g/L, [Catalyst]0 = 0.1 g/L, pH0 = 6.8, T = 4°C). 
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Fig. S11. The relationship between the initial reaction rates removing different 

pollutants over the Fe–N/P1.6–C SAC and their IP values ([BPA]0 = 20 mg/L, PMS = 

0.2 g/L, [Catalyst]0 = 0.1 g/L, pH0 = 6.8, T = 4°C). 
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Fig. S12. Stability of the Fe–N/P1.6–C SAC in the Fenton-like reaction for the BPA 

degradation ([BPA]0 = 20 mg/L, PMS = 0.2 g/L, [Catalyst]0 = 0.1 g/L, pH0 = 6.8, T = 

4°C). 
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Fig. S13. BPA removal over Fe-based catalysts alone with the addition of different (a) 

N or (b) P sources ([BPA]0 = 20 mg/L, PMS = 0.2 g/L, [Catalyst]0 = 0.1 g/L, pH0 = 6.8, 

T = 4°C). 
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Fig. S14. EIS curves of the Fe–N/Pn–C SACs. 
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Fig. S15. Effect of SCN
－
 on BPA degradation in the Fe SACs/PMS system ([BPA]0 = 

20 mg/L, PMS = 0.2 g/L, [Catalyst]0 = 0.1 g/L, [SCN
－
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Fig. S16. The simplified models of (a) Fe–N–C and (b) Fe–N/P1.6–C SACs. 
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Fig. S17. PDOS of Fe–N–C and Fe–N/P1.6–C SACs. 
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