Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2023

Supporting Information (SI)

Reconstructing Atomic Fe Coordination in PMS Activation Process to Realize Efficient BPA Degradation at Low Temperature

Yuxuan Lin,^{#a} Weihua Qin,^{#a} Yuwei Lu^a, Mingye Ren^a, Pan Gao^b, Feng Xiao^a and

Shaoxia Yang*a

^a School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing, 102206, PR China

^b School of Renewable Energy, North China Electric Power University, Beijing, 102206, PR China

[#] Author Contributions: Yuxuan Lin and Weihua Qin contributed equally.

* Corresponding author: Shaoxia Yang (yangshaoxia2012@126.com)

Tel.: +86-10-61772456; Fax: +86-10-61772230.

The supplementary materials include 32 Pages, 2 Texts, 5 Tables, 17 Figures.

Contents

- Text S1. Materials synthesis.
- **Text S2.** Contributions of diverse ROS to BPA oxidation in Fe–N/P_n–C/PMS systems.
- Table S1.
 High performance liquid chromatography (HPLC) operating conditions for organic analysis.
- Table S2.
 Summary of Fe loading in the Fe–N–C SACs for activating PMS systems.
- **Table S3.** Comparison of the BPA degradation over different SACs in the Fenton-like reaction for activating PMS near neutral pH.
- Table S4.
 Comparison on the BPA degradation over different Fe-based

 nanocatalysts in the Fenton-like reaction.
- **Table S5.** Parameters of the obtained water samples.
- **Fig. S1.** SEM images of (a) Fe–N–C and (b) Fe–N/P_{1.6}–C SACs.
- **Fig. S2.** XPS survey spectrum for the Fe– $N/P_{1.6}$ –C SAC.
- **Fig. S3.** Fe–N contents of N 1s and Fe 2p XPS spectra for the Fe– N/P_n –C SACs.
- **Fig. S4.** XPS spectra of (a) Fe 2p and (b) P 2p for the Fe–N/P_n–C SACs.
- **Fig. S5.** The ratio of (Fe-N)/(Fe-P) for the Fe-N/P_n-C SACs.
- **Fig. S6.** Adsorption of BPA on the Fe SACs in the heterogeneous Fenton-like reaction ($[BPA]_0 = 20 \text{ mg/L}$, $[Catalyst]_0 = 0.1 \text{ g/L}$, $pH_0 = 6.8$, $T = 4^{\circ}C$).
- **Fig. S7.** Relationship between different P/N ratios of the Fe–N/P_n–C SACs and the initial reaction rate for the BPA degradation ($[BPA]_0 = 20 \text{ mg/L}$, PMS

 $= 0.2 \text{ g/L}, \text{[Catalyst]}_0 = 0.1 \text{ g/L}, \text{pH}_0 = 6.8$).

- Fig. S8. TOC removal during BPA degradation in the Fe SACs/PMS systems $([BPA]_0 = 20 \text{ mg/L}, \text{PMS} = 0.2 \text{ g/L}, [Catalyst]_0 = 0.1 \text{ g/L}, \text{pH}_0 = 6.8, \text{T}$ $= 4^{\circ}\text{C}$).
- **Fig. S9.** Comparison of the TOF over the reported nanocatalysts for the BPA degradation.
- Fig. S10. The BPA removal.in the presence of inorganic anions in the Fenton-like reaction over the Fe–N/P_{1.6}–C SAC ([BPA]₀ = 20 mg/L, PMS = 0.2 g/L, [Catalyst]₀ = 0.1 g/L, pH₀ = 6.8, T = 4°C).
- Fig. S11. The relationship between the initial reaction rates removing different pollutants over the Fe–N/P_{1.6}–C SAC and their IP values ([BPA]₀ = 20 mg/L, PMS = 0.2 g/L, [Catalyst]₀ = 0.1 g/L, pH₀ = 6.8, T = 4°C).
- Fig. S12. Stability of the Fe–N/P_{1.6}–C SAC in the Fenton-like reaction for the BPA degradation ([BPA]₀ = 20 mg/L, PMS = 0.2 g/L, [Catalyst]₀ = 0.1 g/L, $pH_0 = 6.8, T = 4^{\circ}C$).
- Fig. S13. BPA removal over Fe-based catalysts alone with the addition of different (a) N or (b) P sources ([BPA]₀ = 20 mg/L, PMS = 0.2 g/L, [Catalyst]₀ = $0.1 \text{ g/L}, \text{ pH}_0 = 6.8, \text{ T} = 4^{\circ}\text{C}$).
- **Fig. S14.** EIS curves of the Fe– N/P_n –C SACs.
- Fig. S15. Effect of SCN⁻ on BPA degradation in the Fe SACs/PMS system ([BPA]₀ = 20 mg/L, PMS = 0.2 g/L, [Catalyst]₀ = 0.1 g/L, [SCN⁻]₀ = 4.38 mM, pH₀ = 6.8, T = 4°C).

- **Fig. S16.** The simplified models of (a) Fe–N–C and (b) Fe–N/P_{1.6}–C SACs.
- Fig. S17. PDOS of Fe–N–C and Fe–N/P_{1.6}–C SACs.

Text S1. Materials synthesis.

Synthesis of N/P–C catalyst. Similar to the synthesis of Fe–N/P_{1.6}–C SAC, 400 μ L (6 mmol) of pyrrole monomer and 737 μ L (0.8 mmol) of phytic acid were mixed with 2 mL of ethanol/water (v/v = 1:1). 684 mg (3 mmol) of ammonium persulfate was dissolved into another 6 mL of ethanol/water (v/v = 1:1). The subsequent steps were identical to those for Fe–N/P_{1.6}–C SAC to prepare N, P co-doped porous carbon materials, and the resulting samples were named as N/P–C catalyst.

Synthesis of N–C catalyst. Except for the addition of phytic acid, nitrogen-doped porous carbon (NC) was prepared by the same procedure as for N/P–C catalyst. The resulting sample was named as N–C catalyst.

Synthesis of Fe–N–C SAC. For the synthesis of Fe–N–C SAC, 10 mg of FeCl₃· $6H_2O$ and 30 mg of 1,10-phenanthroline were added to 2 mL of ethanol, mixed well and added dropwise into 100 mg of N–C. The solution was stirred continuously at room temperature until it evaporated. Then, the powder was dried at 80 °C. After drying, the powder was calcinated at 700 °C for 2 h under an N₂ atmosphere at a heating rate of 5 °C/min. The final product was etched with 1 M H₂SO₄ at 80 °C for 2 h to produce Fe–N–C SAC.

Synthesis of Fe–P–C catalyst. Instead of standing overnight, the samples were aged at 70 °C for 2 h under stirring, and then dried at 80 °C overnight, except for the addition of pyrrole monomer. Then, only P-doped porous carbon materials were prepared by the same procedure as Fe–N/P_{1.6}–C SAC. The obtained sample was named as Fe–P–C catalyst.

Synthesis of Fe–N/P_n–C SACs. Consistent with the preparation of Fe–N/P_{1.6}–C SAC, the only difference was that phytic acids (0.2, 0.5, 1, and 1.5 mmol) were added to obtain catalysts with different N/P ratios (0.4, 1, 2, and 3).

Text S2. Contributions of diverse ROS to BPA oxidation in Fe–N/P_n–C/PMS systems.

On the basis of the BPA degradation in the presence of radical scavengers, the contributions of diverse ROS to BPA removal in Fe–N/P_n–C/PMS systems were determined as follows¹:

$$\lambda(\bullet \text{ OH}\&\text{SO}_4^{\bullet-}) = [(1 - C/C_0)_{\text{Control}} - (1 - C/C_0)_{\text{TBA}} - (1 - C/C_0)_{\text{methanol}}] \times 100\%$$
(S1)

$$\lambda(\text{HO}_2^{\bullet}/\text{O}_2^{\bullet-}) = [(1 - C/C_0)_{\text{Control}} - (1 - C/C_0)_{\text{p-BQ}}] \times 100\%$$
(S2)

$$\lambda ({}^{1}O_{2}) = 1 - \lambda (\bullet OH) - \lambda (HO_{2}^{\bullet}/O_{2}^{\bullet-})$$
(S3)

Where $[1-(C/C_0)_{Control}]$ stands for the degradation efficiency of BPA in the absence of quenching agent, and $[1-(C/C_0)_{TBA}]$, $[1-(C/C_0)_{methanol}]$ and $[1-(C/C_0)_{p-BQ}]$ are the degradation efficiency of BPA after adding TBA, methanol, and p-BQ, respectively.

			Ultrapure	0.2% Acetic			
	Wavelength	Flow rate	water	acid	Acetonitrile	Methanol	
Compounds	(nm)	(mL/min)	(%)	(%)	(%)	(%)	Structural formula
BPA	276		30	-	-	70	HO
Phenol	254		-	40	-	60	OH
IBP	222		25	-	75	-	ОН
РНТ	225	1.0	40	-	60	-	H NH NH
4-CP	280		40			60	CI
2,4-D	284			75		26	CI CI

Table S1. High performance liquid chromatography (HPLC) operating conditions for organic analysis.

Catalyst	Loading (wt.%)	Reference
FeN/P _{1.6} C	2.32	This work
Fe-N/C	0.88	2
SA-Fe/CN	0.62	3
SAFe-OCN	0.84	4
Fe–N–C	0.82	5
Fe-SAC	0.71	6
SA-Fe-NC	1.12	7
Fe-SAC	2.60	8

Table S2. Summary of Fe loading in the Fe–N–C SACs for activating PMS systems.

		Catalyst	PMS					
	BPA	dosage	concentration	Т	Removal	TOF	E_{a}	
Catalyst	(mg/L)	(g/L)	(g/L)	(°C)	efficiency	$(L/(\min \cdot g))$	(kJ/mol)	Reference
Fe-N/P _{1.6} -C	20	0.2	0.2	25	98.3% (5 min)	24.49	3.7	This work
Co–N ₂	20	0.2	0.2	30	100% (5 min)	3.47	-	1
Co-N ₄ -C	20	0.1	0.2	25	100% (60 min)	4.52	-	9
3SACu@NBC	20	0.1	0.4	25	100% (30 min)	1.57	-	10
Fe _{SA} -N-C-20	20	0.15	0.4	-	100% (20 min)	1.6	-	2
Mn–ISA@CN	20	0.2	0.2	25	100% (6 min)	5.69	-	11
NiZn@N-G-900	20	0.2	0.2	30	100% (80 min)	2.67	15.75	12
Cu-N ₄ /C-B	20	0.1	0.2	25	98% (5 min)	5.6	-	
Cu-N ₄ /C-P	20	0.1	0.2	25	11% (5 min)	0.08	-	13
Cu–N ₄ /C	20	0.1	0.2	25	57% (5 min)	1.02	-	

Table S3. Comparison of the BPA degradation over different SACs in the Fenton-like reaction for activating PMS near neutral pH.

	ΒDΛ	Catalyst		Oxidant		т	Pemoval	TOF	F	
Catalyst	(mg/L)	(g/L)	Oxidant	(mM)	pН	r (°C)	efficiency	$(L/(\min \cdot g))$	L _a (kJ/mol)	Reference
FeN/P _{1.6} C	20	0.1	PMS	0.65	6.8	4	98.3% (5 min)	24.5	3.7	This work
GS-Fe-NPs	25	0.3	H_2O_2	1000	6.9	30	95% (140 min)	0.1067	128.8	14
MIL-101(Fe)	50	0.2	H_2O_2	10	6.0	30	100% (30 min)	1.75	46	15
Fe _{0.8} Co _{2.2} O ₄	20	0.1	PMS	0.65	3.0	30	95% (60 min)	0.49	19.45	16
FeCA-g-C ₃ N ₄	20	0.5	H_2O_2	10	4.0	-	92.5% (30 min)	0.17	-	17
$Fe^{3+}@g-C_3N_4$	20	0.2	PMS	0.65	3.0	-	100% (15 min)	3.02	-	18
Ag/AgCl/Fh	30	1	H_2O_2	5	3.0	-	100% (60 min)	0.05	-	19
CN-Cu(II)-CuAlO ₂	25	1	H_2O_2	5	6-7	35	98% (120 min)	0.03	-	20
Fe-Co-85	20	0.2	H_2O_2	80	6.0	25	85% (6 min)	0.38	-	21

Table S4. Comparison on the BPA degradation over different Fe-based nanocatalysts in the Fenton-like reaction.

	Secondary effluent	South-to-North Water Diversion
pH	6.56	8.36
TOC (mg/L)	5.22	3.07
Cl^{-} (mg/L)	6.05	0.23
HCO ₃ ⁻ (mg/L)	21.36	-
SO4 ²⁻ (mg/L)	47.62	23.49

 Table S5. Parameters of the obtained water samples.

Fig. S1. SEM images of (a) Fe–N–C and (b) Fe–N/P_{1.6}–C SACs.

Fig. S2. XPS survey spectrum for the Fe– $N/P_{1.6}$ –C SAC.

Fig. S3. Fe–N contents of N 1s and Fe 2p XPS spectra for the Fe–N/P_n–C SACs.

Fig. S4. XPS spectra of (a) Fe 2p and (b) P 2p for the Fe–N/P_n–C SACs.

Fig. S5. The ratio of (Fe–N)/(Fe–P) for the Fe–N/P_n–C SACs.

Fig. S6. Adsorption of BPA on the Fe SACs in the heterogeneous Fenton-like reaction $([BPA]_0 = 20 \text{ mg/L}, [Catalyst]_0 = 0.1 \text{ g/L}, pH_0 = 6.8, T = 4^{\circ}C).$

Fig. S7. Relationship between different P/N ratios of the Fe–N/P_n–C SACs and the initial reaction rate for the BPA degradation ([BPA]₀ = 20 mg/L, PMS = 0.2 g/L, [Catalyst]₀ = 0.1 g/L, pH₀ = 6.8).

Fig. S8. TOC removal during BPA degradation in the Fe SACs/PMS systems ([BPA]₀ = 20 mg/L, PMS = 0.2 g/L, [Catalyst]₀ = 0.1 g/L, pH₀ = 6.8, T = 4°C).

Fig. S9. Comparison of the TOF over the reported nanocatalysts for the BPA degradation.

Fig. S10. The BPA removal in the presence of inorganic anions (Cl⁻, HCO₃⁻, SO₄^{2⁻}) in the Fenton-like reaction over the Fe–N/P_{1.6}–C SAC ([BPA]₀ = 20 mg/L, PMS = 0.2 g/L, [Catalyst]₀ = 0.1 g/L, pH₀ = 6.8, T = 4°C).

Fig. S11. The relationship between the initial reaction rates removing different pollutants over the Fe–N/P_{1.6}–C SAC and their IP values ([BPA]₀ = 20 mg/L, PMS = 0.2 g/L, [Catalyst]₀ = 0.1 g/L, pH₀ = 6.8, T = 4°C).

Fig. S12. Stability of the Fe–N/P_{1.6}–C SAC in the Fenton-like reaction for the BPA degradation ([BPA]₀ = 20 mg/L, PMS = 0.2 g/L, [Catalyst]₀ = 0.1 g/L, pH₀ = 6.8, T = 4° C).

Fig. S13. BPA removal over Fe-based catalysts alone with the addition of different (a) N or (b) P sources ([BPA]₀ = 20 mg/L, PMS = 0.2 g/L, [Catalyst]₀ = 0.1 g/L, pH₀ = 6.8, $T = 4^{\circ}C$).

Fig. S14. EIS curves of the Fe– N/P_n –C SACs.

Fig. S15. Effect of SCN⁻ on BPA degradation in the Fe SACs/PMS system ([BPA]₀ = 20 mg/L, PMS = 0.2 g/L, [Catalyst]₀ = 0.1 g/L, [SCN⁻]₀ = 4.38 mM, pH₀ = 6.8, T = 4°C).

Fig. S16. The simplified models of (a) Fe–N–C and (b) Fe–N/P_{1.6}–C SACs.

Fig. S17. PDOS of Fe–N–C and Fe–N/P_{1.6}–C SACs.

Reference

- X. Liang, D. Wang, Z. Zhao, T. Li, Y. Gao and C. Hu, Coordination number dependent catalytic activity of single-atom cobalt catalysts for Fenton-like reaction, *Adv. Funct. Mater.*, 2022, **32**, 2203001.
- T. Yang, S. Fan, Y. Li and Q. Zhou, Fe-N/C single-atom catalysts with high density of Fe-N_x sites toward peroxymonosulfate activation for high-efficient oxidation of bisphenol A: Electron-transfer mechanism, *Chem. Eng. J.*, 2021, **419**, 129590.
- Y. Xiong, H. C. Li, C. W. Liu, L. R. Zheng, C. Liu, J. O. Wang, S. J. Liu, Y. H. Han, L. Gu, J. S. Qian and D. S. Wang, Single-atom Fe catalysts for Fenton-like reactions: Roles of different N species, *Adv. Mater.*, 2022, 34, 2110653.
- Z. Zhou, M. Q. Li, C. G. Kuai, Y. X. Zhang, V. F. Smith, F. Lin, A. Aiello, D. P. Durkin, H. N. Chen and D. M. Shuai, Fe-based single-atom catalysis for oxidizing contaminants of emerging concern by activating peroxides, *J. Hazard. Mater.*, 2021, **418**, 126294.
- L. Peng, X. G. Duan, Y. N. Shang, B. Y. Gao and X. Xu, Engineered carbon supported single iron atom sites and iron clusters from Fe-rich Enteromorpha for Fenton-like reactions via nonradical pathways, *Appl. Catal. B-Environ.*, 2021, 287, 119963.
- Y. Gao, T. W. Wu, C. D. Yang, C. Ma, Z. Y. Zhao, Z. H. Wu, S. J. Cao, W. Geng,
 Y. Wang, Y. Y. Yao, Y. N. Zhang and C. Cheng, Activity trends and mechanisms in peroxymonosulfate-assisted catalytic production of singlet oxygen over atomic

metal-N-C catalysts, Angew. Chem. Int. Edit., 2021, 60, 22513-22521.

- Y. W. Gao, Y. Zhu, T. Li, Z. H. Chen, Q. K. Jiang, Z. Y. Zhao, X. Y. Liang and C. Hu, Unraveling the high-activity origin of single-atom iron catalysts for organic pollutant oxidation via peroxymonosulfate activation, *Environ. Sci. Technol.*, 2021, 55, 8318-8328.
- M. Yang, R. Wu, S. Cao, Y. Li, S. Huo, W. Wang, Z. Hu and X. Xu, Versatile pathways for oxidating organics via peroxymonosulfate activation by different single atom catalysts confining with Fe–N₄ or Cu–N₄ sites, *Chem. Eng. J.*, 2023, 451, 138606.
- M. Yang, Z. Hou, X. Zhang, B. Gao, Y. Li, Y. Shang, Q. Yue, X. Duan and X. Xu, Unveiling the origins of selective oxidation in single-atom catalysis via Co–N₄–C intensified radical and nonradical pathways, *Environ. Sci. Technol.*, 2022, 56, 11635–11645.
- J. Pan, B. Gao, P. Duan, K. Guo, M. Akram, X. Xu, Q. Yue and Y. Gao, Improving peroxymonosulfate activation by copper ion-saturated adsorbent-based single atom catalysts for the degradation of organic contaminants: electron-transfer mechanism and the key role of Cu single atoms, *J. Mater. Chem. A*, 2021, 9, 11604-11613.
- J. Yang, D. Zeng, Q. Zhang, R. Cui, M. Hassan, L. Dong, J. Li and Y. He, Single Mn atom anchored on N-doped porous carbon as highly efficient Fenton-like catalyst for the degradation of organic contaminants, *Appl. Catal. B-Environ.*, 2020, **279**, 119363.

- J. J. You, C. Y. Zhang, Z. L. Wu, Z. M. Ao, W. Y. Sun, Z. K. Xiong, S. J. Su, G. Yao and B. Lai, N-doped graphite encapsulated metal nanoparticles catalyst for removal of Bisphenol A via activation of peroxymonosulfate: A singlet oxygen-dominated oxidation process, *Chem. Eng. J.*, 2021, **415**, 128890.
- X. Zhou, M.-K. Ke, G.-X. Huang, C. Chen, W. Chen, K. Liang, Y. Qu, J. Yang, Y. Wang, F. Li, H.-Q. Yu and Y. Wu, Identification of Fenton-like active Cu sites by heteroatom modulation of electronic density, *Proc. Natl. Acad. Sci. U. S. A.*, 2022, 119, e2119492119.
- B. Guo, T. T. Xu, L. Zhang and S. Li, A heterogeneous Fenton-like system with green iron nanoparticles for the removal of bisphenol A: Performance, kinetics and transformation mechanism, *J. Environ. Manage.*, 2020, 272, 111047.
- P. P. Huang, L. L. Yao, Q. Chang, Y. H. Sha, G. D. Jiang, S. H. Zhang and Z. Li, Room-temperature preparation of highly efficient NH₂-MIL-101(Fe) catalyst: The important role of -NH₂ in accelerating Fe(III)/Fe(II) cycling, *Chemosphere*, 2022, 291, 133026.
- 16. X. Li, Z. H. Wang, B. Zhang, A. I. Rykov, M. A. Ahmed and J. H. Wang, Fe_xCo_{3-x}O₄ nanocages derived from nanoscale metal-organic frameworks for removal of bisphenol A by activation of peroxymonosulfate, *Appl. Catal. B-Environ.*, 2016, 181, 788-799.
- Y. Yin, R. X. Jia, W. M. Zhang, Y. Ren, X. Y. Li, M. Hua and L. Lv, Electron-rich oxygen enhanced Fe-doped g-C₃N₄ mediated Fenton-like process: Accelerate Fe(III) reduction and strengthen catalyst stability, *J. Clean. Prod.*, 2021, **319**,

128680.

- H. C. Li, C. Shan and B. C. Pan, Fe(III)-doped g-C₃N₄ mediated peroxymonosulfate activation for selective degradation of phenolic compounds via high-valent iron-oxo species, *Environ. Sci. Technol.*, 2018, **52**, 2197-2205.
- Y. P. Zhu, R. L. Zhu, Y. F. Xi, T. Y. Xu, L. X. Yan, J. X. Zhu, G. Q. Zhu and H. P. He, Heterogeneous photo-Fenton degradation of bisphenol A over Ag/AgCl/ferrihydrite catalysts under visible light, *Chem. Eng. J.*, 2018, **346**, 567-577.
- L. Lyu, D. B. Yan, G. F. Yu, W. R. Cao and C. Hu, Efficient destruction of pollutants in water by a dual-reaction center Fenton-like process over carbon nitride compounds-complexed Cu(II)-CuAlO₂, *Environ. Sci. Technol.*, 2018, **52**, 4294-4304.
- J. Y. Liu, X. N. Li, B. Liu, C. X. Zhao, Z. C. Kuang, R. S. Hu, B. Liu, Z. M. Ao and J. H. Wang, Shape-controlled synthesis of metal-organic frameworks with adjustable Fenton-like catalytic activity, *ACS Appl. Mater. Interfaces.*, 2018, 10, 38051-38056.