Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

1. Method MIB/Geosmin and benzene

Table SI 1 : Analytical methods parameters and validation data

Pollutant	Desorption	GC	Sample	Injection	Quantification	Internal	LOD (ng/L)
	parameters	gradient	extraction	mode	ions (<i>m/z</i>)	standards	
	(TDU-CIS)						
Geosmin	TDU: 30°C (1	50°C (2	10 g NaCl;	Venting	<i>m/z</i> 95 for	cis-	0.8 ng/L
and MIB	min) rate	min);	stir bar	mode	geosmin and	decahydro-	for MIB
	720°C/min	10°C/min	placed		<i>m/z</i> 112 for	1-naphtol	and 0.4
	to 280°C (3	to 200°C;	into the		MIB		ng/L for
	min); CIS:	25°C/min	sample				geosmin
	12°C/min to	to 280°C;	(50 mL) at				
	280°C (5	280°C (2	1200 rpm				
	min)	min)	during 1h				
Benzene	TDU: 20°C (1	35°C (5	Stir bar	Splitless	m/z 78	d ⁶ -benzene	21 ng/L
	min) rate	min);	placed	mode			
	720°C/min	5°C/min to	into the				
	to 280°C (2	70°C,	gas				
	min); CIS:	30°C/min	phase.				
	12°C/min to	to 220°C,	Sample				
	280°C (5	80°C/min	(50 mL)				
	min)	to 280°C (2	was				
		min)	stirred at				
			1750 rpm				

Table SI 2 : Parameters obtained during the method development for MIB/Geosmin and benzene analysis

Compounds	LOD (ng/L)	R2	Repeatability at 50 ng/L (%)	Reproducibility (%)	Accuracy (%)

Geosmin	0.8	0.992	5	8	13
MIB	0.4	0.999	3	7	13
Benzene	21	0.998	15	18	15

Stir bar sorptive extraction coupled to GC-MS (SBSE-GC-MS) has been widely used to extract off flavour compounds from water samples.¹⁻³ Benanou et al. have developed a method with this technique that showed good linearity over the concentration range 5-40 ng/L for MIB/geosmin.⁴ The development of this method was inspired by this publication. Method parameters and validation control measurements for all target compounds can be found in Table SI 1 and Table SI 2.

For method validation: A five-point calibration curve was obtained by spiking surface water samples at 1, 5, 10, 50, 100 and 250 ng·L⁻¹ of MIB/geosmin. The method limit of detection (LOD) and method limit of quantification (LOQ) were determined as 3.3 and 10 times, respectively, the standard deviation of the y intercept divided by the slope of the calibration curve in the matrix sample. A deuterated benzene internal standard (IS) was used to correct the signal variation of benzene and a homologous compound was used to correct the MIB/geosmin signal. Thus, concentrations of geosmin, MIB and benzene were calculated using the ratio of the target compounds area to that of the labelled IS. In each set of samples, the IS were added to the samples before the extraction step. Repeatability (intra-day precision) was calculated by analysing the same spiked and extracted samples at two different concentrations (50 and 250 ng·L⁻¹) on a single workday (n = 5) and was expressed as a relative standard deviation (RSD - %). Reproducibility (inter-day precision) was also evaluated by analysing spiked and extracted samples at two different concentrations (50 and 250 ng·L⁻¹) for two days (n = 5 each days) and prepared daily. Accuracy was determined by the relative error (%) and precision values were calculated as the RSD (%).

1200 1200 1000 1000 lodine number (mg/g) lodine number (mg/g) 800 800 600 600 400 400 1796.3x + 229.93 200 0.5035x + 209.21 200 $R^2 = 0.66$ $R^2 = 0.55$ 0 0 1300 0.10 0.20 0.30 0.40 500 700 900 1100 1500 Micropore volume (mL/g) Specific surface area (m²/g)

2. Correlations between iodine number and carbon characteristics

Figure SI 2: Iodine number as a function of micropore volume and specific surface area

Figure SI 3: Removal of MIB and geosmin as a function of iodine number

Figure SI 4: Removal performance in all three water matrices

Figure SI 5: Relative removal performance of MIB and geosmin in water from the St-Lawrence and Mille Îles River

Figure SI 6: Iodine numbers of PAC with different base material.

Figure SI 7: Removal of MIB in three tested water matrices

4. Carbon characteristics

Figure SI 8: Pore size distributions of all tested carbons

Figure SI 9: Particle size distributions of PACs as (a) frequency distribution and (b) cumulative curve

	Table SI	3:	General	linear	models	tested
--	----------	----	---------	--------	--------	--------

Model	Predictors	Predictor type	Levels	P-values	R ²	Adjusted R ²
1	Micropore Vol	Continuous	-	0.003	0.425	0.367
	Uniformity Coeff	Continuous	-	0.003		
	D50	Continuous	-	< 0.001		
	Matrix	Categorical	3	< 0.001		
	Pollutant	Categorical	2	0.860		
2	Micropore Vol	Continuous	-	0.003	0.425	0.377
	Uniformity Coeff	Continuous	-	0.002		
	Matrix	Categorical	3	< 0.001		
	D50	Continuous	-	0.084		
3	Micropore Vol	Continuous	-	0.005	0.395	0.355
	Uniformity Coeff	Continuous	-	< 0.001		
	Matrix	Categorical	3	< 0.001		
4	Micropore Vol	Continuous	-	0.006	0.355	0.324
	Uniformity Coeff	Continuous	-	0.003		
	Total LMW NOM	Continuous	-	< 0.001		
5	Micropore Vol	Continuous	-	0.008	0.300	0.267
	Uniformity Coeff	Continuous	-	0.004		
	DOC	Continuous	-	0.004		
6	Micropore Vol	Continuous	-	0.008	0.310	0.277
	Uniformity Coeff	Continuous	-	0.004		
	UVA254	Continuous	-	0.002		
7	Micropore Vol	Continuous	-	0.019	0.448	0.359
	Uniformity Coeff	Continuous	-	0.138		
	Matrix	Categorical	3	0.511		
	Micropore Vol x Uniformity Coeff			0.045		
	Micropore Vol x Matrix			0.746		
	Uniformity Coeff x Matrix			0.770		
8	Micropore Vol	Continuous	-	0.017	0.437	0.390
	Uniformity Coeff	Continuous	-	0.129		
	Matrix	Continuous	-	< 0.001		
	Micropore Vol x Uniformity Coeff			0.040		

References

- 1. N. Ochiai, K. Sasamoto, M. Takino, S. Yamashita, S. Daishima, A. Heiden and A. Hoffman, Determination of trace amounts of off-flavor compounds in drinking water by stir bar sorptive extraction and thermal desorption GC-MS, Analyst, 2001, **126**, 1652-1657.
- 2. S. Nakamura, N. Nakamura and S. Ito, *Determination of 2-methylisoborneol and geosmin in water by gas chromatography-mass spectrometry using stir bar sorptive extraction, Journal of Separation Science*, 2001, **24**, 674-677.
- J. D. Carmi, I. Olivares, P. Grossi and F. M. Lancas, *Refrigerated Sorptive Extraction:* Determination of BTEX in Water Samples, Journal of Chromatographic Science, 2009, 47, 812-816.
- 4. D. Benanou, F. Acobas and M.-R. de Roubin, *Optimization of stir bar sorptive extraction applied to the determination of odorous compounds in drinking water, Water Science and Technology*, 2004, **49**, 161-170.