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The pseudo-code of Seq(GP-UCB-SW) is presented in Algorithm S1. It requires as input the set of 
possible sampling instants {a1, ..., an}, the length of the sliding window SW, the time horizon of the 
monitoring campaign T and the first sampling instant a0. At first, it initializes the GP and sets the next 
sampling instant nextSample equal to a0. During the entire time horizon, if the available sampling 
instant a is equal to nextSample, then, sampling is performed, retrieving the sample concentration Ca. 
Afterwards, the samples collected in the days included in SW are selected and used to fit the GP. The 
fitted GP is, then, used to derive the upper and, eventually, lower confidence bounds (UCB and LCB) 
which are used to select the next sampling instant.

Algorithm S1. Pseudo-code of the Seq(GP-UCB-SW) algorithm. Pseudo-commands after “//” indicate variation 
of the algorithm for targeting maximum concentration variations.

The pseudo-code of Seq(GP-UCB-CD) is presented in Algorithm S2. It requires as input the set of 
possible sampling instants {a1, ..., an}, the length of the training window TW, the exploration 
probability α, the time horizon of the monitoring campaign T and the first sampling instant a0. At first, 
it initializes the GP and the change point models (CPMs) regarding the maximum daily concentrations 
(CPMmax) and, eventually, the ones regarding the minimum daily concentrations (CPMmin) and the 
maximum daily variation (CPMdelta). It also sets the day of the first change point (CP) as 0 and the 
next sampling instant nextSample as a0. At the beginning of each day, the vector dailySamples is 
initialized to store the concentrations of the samples collected during the day. Then, if the available 
sampling instant a is equal to nextSample, then, sampling is performed, retrieving the sample 
concentration Ca which is added to the dailysamples vector. Afterwards, the samples collected after 
the previous changepoint are selected and used to fit the GP. The fitted GP is, then, used to derive the 
upper and, eventually, lower confidence bounds (UCB and LCB). With probability 1 - α the next 
sampling instant is selected based on UCB and, eventually, LCB, while with probability α the next 
sampling instant is selected at random among the available options. At the end of each day after the 
training window is elapsed, maximum and, eventually, minimum concentrations and the maximum 
daily variation are derived from the dailySamples vector and used to update the CPMs. In case a CPM 
detects the presence of a changepoint, CP is set equal to the current day t. Successivley, all the active 
CPMs are resetted.



Algorithm S2. Pseudo-code of the Seq(GP-UCB-CD) algorithm. Pseudo-commands after “//” indicate variation 
of the algorithm for targeting maximum concentration variations.



Figure S1. ICC measurements obtained from Nescerecka et al.,1 shown as red dots, and fitted average pattern, 
indicated with a blue line. The green line indicates the shape of the pattern after the abrupt change.

Figure S2. Average THMs concentration pattern obtained from the model developed by Chaib and 
Moschandreas2, in blue, and pattern after the gradual change, in green.



Figure S3. TCC measurements obtained from Gabrielli et al.3.

Figure S4. Histogram of the change detection alerts provided by Seq(GP-UCB-CD) in the ICC synthetic 
scenario.



Figure S5. Average performances of tested monitoring schemes along the THMs synthetic scenario (rolling 
mean, n = 25). To show the temporal variation of the RDOTmax obtained by the traditional schemes along the 
gradual pattern change a vertical displacement was applied at each SPD value. For each SPD value, the temporal 
RDOTmax evolution is to be read vertically moving from the lower to the higher SPD values. To avoid clutter 
only the fixed-time sampling instants combination with the best performances before the pattern change was 
shown. The proposed algorithms’ results were obtained with the following algorithms parameterization: SW = 
30 d, TW = 30 d, α = 0.1.

Figure S6. Average performances of tested monitoring schemes along the THMs synthetic scenario (rolling 
mean, n = 25). To show the temporal variation of the RDOTmax obtained by the traditional schemes along the 
gradual pattern change a vertical displacement was applied at each SPD value. For each SPD value, the temporal 
RDOTmax evolution is to be read vertically moving from the lower to the higher SPD values. To avoid clutter 
only the fixed-time sampling instants combination with the worst performances before the pattern change was 



shown. The proposed algorithms’ results were obtained with the following algorithms parameterization: SW = 
30 d, TW = 30 d, α = 0.1.

Figure S7. Histogram of the change detection alerts provided by Seq(GP-UCB-CD) in the THMs synthetic 
scenario.

Figure S8. Histogram of the change detection alerts provided by Seq(GP-UCB-CD) in the real-world scenario.



Figure S9. Sampling frequency histograms of Seq(GP-UCB-SW) in case of uniform concentration pattern 
characterized by minimum (a) and maximum (b) uniformity.

Figure S10. Sampling frequency histograms of Seq(GP-UCB-CD) in case of uniform concentration pattern 
characterized by minimum (a) and maximum (b) uniformity.

Figure S11. Histograms regarding the change detection probability obtained with a training window equal to 10 
d (a) or 30 d (b).
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