Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Characterization of the nitrogen-transforming microbial community in the biofilms of a full-scale rotating biological contactor system treating wastewater from a fresh market building

Prinpida Sonthiphand¹, Chanon Panthapa², Wuttichai Mhuantong³, Nampetch Charanaipayuk⁴, Pratamaporn Homyok², Tawan Limpiyakorn^{2,5}†

¹Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand ²Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

³National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani 12120, Thailand

⁴International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok, Thailand

⁵Research Unit Control of Emerging Micropollutants in Environment, Chulalongkorn University, Bangkok 10330, Thailand

Table S1. Primers used in this study.

Microorganism, target gene	Primer set	Annealing temp (°C)		D. C
		PCR*	qPCR	Reference
AOA, amoA	Arch-amoAF Arch-amoAR	53	53	(1)
AOB, $amoA$	amoA-1F amoA-2R	56	53	(2)
Anammox, 16S rRNA	A438f A684r	55	55	(3)
Comammox, amoA	comamoA AF comamoA SR	58	58	(4)
Nitrospira, nxrB	nxrB169f nxrB638r	56.2	56	(5)
Nitrobactor, nxrA	F1norA R2norA	60	55	(6)
Nitrotoga, 16S rRNA	Ntoga124F Ntoga1462R	63	-	(7)
DNRA, nrfA	nrfA2aw nrfAR1	53	-	(8)
	F1nrfA R1nrfA	45	-	(9)

^{*}Primers were added with overhang adapters for sequencing analysis

forward overhang sequences: 5'TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-[locus-specific sequence] reverse overhang sequences: 5'GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-[locus-specific sequence]

References

- 1. C.A. Francis, K. J. Roberts, J. M. Beman, A. E. Santoro, B. B. Oakley, Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean, *Proc. Natl. Acad. Sci. U. S. A.*, 2005, **102**(41), 14683.
- 2. J. H. Rotthauwe, K. P. Witzel, W. Liesack, The ammonia monooxygenase structural gene *amoA* as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations, *Appl. Environ. Microbiol.*, 1997, **63**(12), 4704-4712.
- 3. S. Humbert, J. Zopfi, and S. E. Tarnawski, Abundance of anammox bacteria in different wetland soils, *Environ. Microbiol. Rep.*, 2012, **4**, 484-490.
- 4. M. Wang, G. Huang, Z. Zhao, C. Dang, W. Liu, M. Zheng, Newly designed primer pair revealed dominant and diverse comammox *amoA* gene in full-scale wastewater treatment plants, *Bioresour*. *Technol.*, 2018, **270**, 580-587.
- 5. M. Pester, F. Maixner, D. Berry, T. Rattei, H. Koch, S. Lücker, B. Nowka, A. Richter, E. Spieck, E. Lebedeva, A. Loy, M. Wagner, H. Daims, *NxrB* encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for nitrite-oxidizing *Nitrospira*, *Environ. Microbiol.*, 2014, **16**(10), 3055-3071.
- 6. F. Poly, S. Wertz, E. Brothier, V. Degrange, First exploration of *Nitrobacter* diversity in soils by a PCR cloning-sequencing approach targeting functional gene nxrA, *FEMS Microbiol. Ecol.*, 2008, **63**(1), 132-140.
- 7. S. Lücker, J. Schwarz, C. Gruber-Dorninger, *et al.*, *Nitrotoga*-like bacteria are previously unrecognized key nitrite oxidizers in full-scale wastewater treatment plants, *ISME J.*, 2015, **9**, 708–720.
- 8. A. Welsh, J. C. Chee-Sanford, L. M. Connor, F. E. Löffler, R. A. Sanford, Refined NrfA phylogeny improves PCR-based *nrfA* gene detection, *Appl. Environ. Microbiol.*, 2014, **80**(7), 2110-2119.
- 9. S. Mohan, M. Schmid, M. Jetten, J. Cole, Detection and widespread distribution of the *nrfA* gene encoding nitrite reduction to ammonia, a short circuit in the bio- logical nitrogen cycle that competes with denitrification, *FEMS Microbiol. Ecol.*, 2004, **49**, 433–443.

Table S2. Diversity indices of T1 and T2 samples

	T1	T2
Ace	1,319	1,477
Chao1	1,325	1,480
Shannon	8.69	8.88

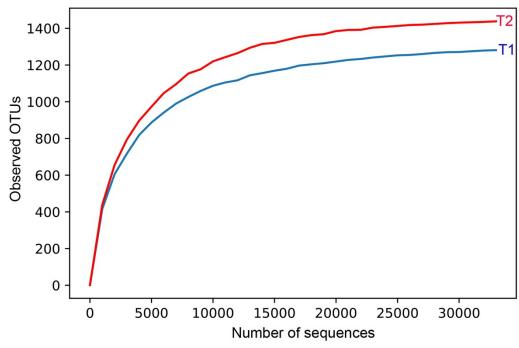
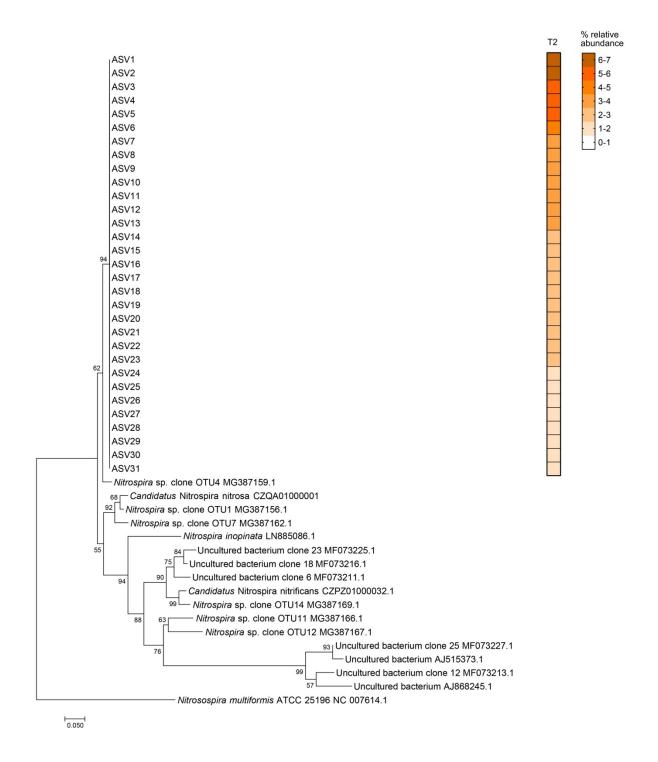
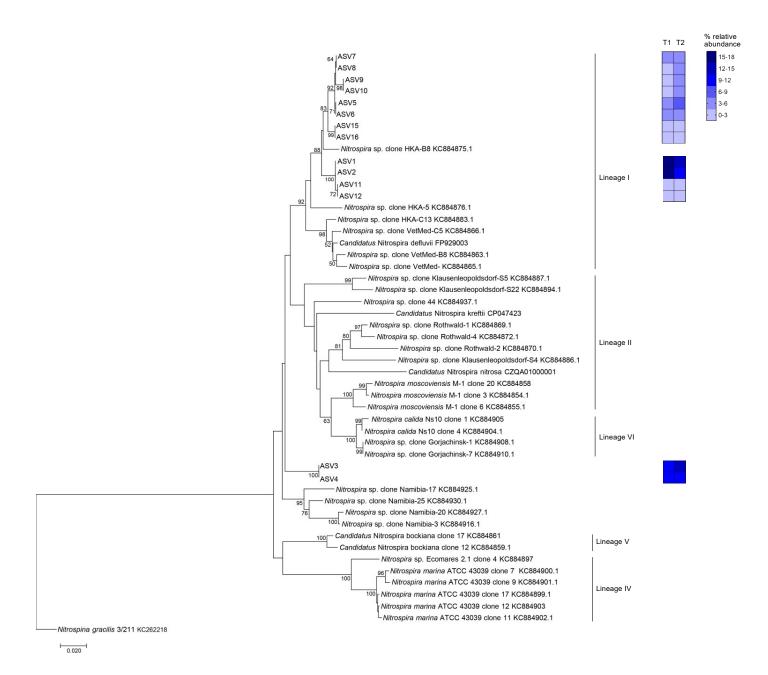




Figure S1. Rarefaction curves of T1 and T2 samples

Figure S2. Neighbor-joining tree calculated based on sequences of comammox amoA gene fragments. The heat map on the right was generated based on the ASVs that show $\geq 1\%$ relative abundance of sequences in the sample. In total, >94% of the total sequences was included in the analysis.

Figure S3. Neighbor-joining tree calculated based on sequences of *Nitrospira nxrB* gene fragments. The heat map on the right was generated based on the ASVs that show $\geq 1\%$ relative abundance of sequences in each sample. In total, >80% of the total sequences were included in the anlysis.