Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2022

Supporting Information (SI) for:

Coupling a Rotating Biological Contactor with an Anaerobic Baffled

Reactor for Sustainable Energy Recovery from Domestic

Wastewater

Authors: Mona Mohammed^{a,b}, Deborah L. Sills^{b,§},

- (a) Independent WASH consultant, Sana'a, Yemen (Current Address)
- (b) Department of Civil and Environmental Engineering, 215 Dana Engineering, Bucknell University, Lewisburg, PA 17837, United States

[§]Corresponding author <u>deborah.sills@bucknell.edu</u>, ph: (607) 277 5609

Contents

A.	Summary of Rotating Biological Contactor Design process3
B.	Labortory study5
I	B1. Synthetic Wastewater
I	B2. Henry's Constant6
I	B3. Tracer Test
C.	Engineering Process Model9
(C1. Process flow of Model Scenarios9
(C2. Building the Process Engineering Models11
(C3. Normalization Factors13
(C4. Uncertainty Analysis
(C5. Technoeconomic analysis14
D.	Supplementary Results
I	D1. Recipe H Midpoints
I	D2. Capital and Operating Costs20
E.	Bibliography

A. Summary of Rotating Biological Contactor Design process

Design parameters for the RBC were based on criteria outlined in Grady et al. (2011).¹ The reactor was designed to accommodate a flowrate of ~30 L/day, hydraulic loading rate of 0.08 to 0.16 m³/m² day with influent BOD₅ concentration of 200 mg/L. To ensure sufficient oxygen transfer, the RBC was designed with a surface organic loading of 12 to 20 g of SBOD/m² day (20-35 g SCOD) for each chamber. The first two stages were designed to remove carbonaceous biological oxygen demand (BOD). The third stage was designed to remove nitrogenous BOD, as carbonaceous BOD concentrations were estimated to be below 20 mg/L in the third stage. A more detailed descripton of the lab-scale RBC is presented in Table A.1.

Parameter	Baffle region	First and Second Stage	Third Stage
Disk Diameter (m)	N/A	0.2	0.23
Number of Disks	0	8	8
Area of disks (m ²)	0	0.065	0.085
Length of Stage (m)	0.018	0.24	0.277
Width of Stage (m)	0.256	0.256	0.256
Depth of Stage (m)	0.297	0.297	0.297
Over baffle height (m)	0.128	0.128	0.129
Volume (L)	1.37	18.25	21.06
Liquid Volume (L)	0.59	7.86	9.15
HRT (day)	0.02	0.24	0.28

Table A.1 Lab-scale rotating biological contacter parameters

Supplementary Figure A.1 (a) Laboratory-scale rotating biological contactor (RBC) (V = 17.6 L). Synthetic feed was sparged with methane gas using a gas flow controller (GFC) in the methanation chamber. Air was supplied to the closed reactor using a GFC, and air flow out of the reactor was measured with a precision wet tip gas meter. (b) Image of reactor

B. Labortory study

B1. Synthetic Wastewater

The synthetic wastewater used in this study (Table B.1) simulated anaerobic effluent from anaerobic treatment of domestic sewage.^{2,3} A half strength wastewater (recipe in Table B.1 diluted by 2) was used during the start-up period.

Chemical Formula (Manufacturer, Location)	Concentration in Feed (mg/L)
KH2PO4 (Acros Organics, NJ, USA)	11
CaCl2·2H2O (Fisher Chemicals, Fair Lawn, NJ)	5
MgCl2·6H2O (VWR, West Chester, PA)	33
KCl (End Chemicals, Gibbstown, NJ)	16
NH4Cl (Beantown Chemicals, Hudson, NH)	150
Na2S·2H2O (Alfa Aesar, Ward Hill, MA)	59.5
C3H5NaO2 (Spectrum Chemical MFG CORP, New Brunswick, NJ)	116.643
CH3COONa.H2O (Amersco, Solon, OH)	44.336
Ensure (Abbott, Chicago, IL)	8.036
FeSO4·7H2O (Fisher Chemicals, Fair Lawn, NJ)	5.49
CoCl2·6H2O (Fisher Chemicals, Fair Lawn, NJ)	1.70x10-1
ZnSO4·7H2O (Amersco, Solon, OH)	2.50 x10-2
H3BO3 (Fisher Chemicals, Fair Lawn, NJ)	6.00 x10-2
MnCl2·4H2O (Fisher Chemicals, Fair Lawn, NJ)	4.00 x10-2
CuCl2·2H2O (Ward's Science Rochester, NY)	2.70 x10-2
Na2MoO4·2H2O (Fisher Chemicals, Fair Lawn, NJ)	2.50 x10-2
Al2(SO4)3 (Fisher Chemicals, Fair Lawn, NJ)	1.67 x10-2
NiCl2·6H2O (Fisher Chemicals, Fair Lawn, NJ)	2.40 x10-2
Na2SeO4 (VWR, West Chester, PA)	1.70 x10-3

Table B.1 Composition of influent synthetic wastewater in mg/L.

B2. Henry's Constant

A dimensionsless Henry's Law constant was calculated using Equations (B1) and (B2) for a temperature of 20°C :

$$LogK_{H}(atm) = -\frac{675.74}{T(K)} + 6.88$$
 (B1)

Where K_{H} is Henry's constant [atm] at temperature T [K], 675.74 and 6.88 are constants (provided by Tchobanoglous, 2003)

$$K_{H,T}\left(\frac{mole/L(aq)}{mole/L(gas)}\right) = \frac{R * T\left(\frac{l * atm * K}{mole * K}\right) * 55.6 \left(\frac{moleH_2O}{L_{H_2O}}\right)}{K_H(atm)}$$
(B2)

where, $K_{H,T}$ is the dimensionless Henry's constant, R is the gas constant (0.08205 L-atm/mole-K), T is the temperature in degrees Kelvin, 55.6 is the molar concentration of water, and K_H is Henry's constant [atm] at temperature T [K].⁴

B3. Tracer Test: Model

The mass balance on the barrier region is

$$V_1 \frac{dC_1}{dt} = QC_{H20} - QC_1$$
(B3)

where, V_1 is the volume of the barrier area of the RBC,

 C_1 is the concentration of the tracer in the barrier region and its effluent over time,

t is time, since the injection,

Q is the flowrate, and

 C_{H20} is the concentration of the tracer in the influent water, which is zero.

The mass balance on the first chamber of the RBC is

$$V_2 \frac{dC_2}{dt} = QC_1 - QC_2 \tag{B4}$$

where, V_2 is the volume of the first chamber of the RBC, and

 C_2 is the concentration of the tracer in the first chamber and its effluent over time. The mass balance on the second chamber (which has the same volume as the first chamber, V₂ is

$$V_2 \frac{dC_3}{dt} = QC_2 - QC_3$$
(B5)

where, V_2 is the volume of the second chamber, and

 C_3 is the concentration of the tracer in the second chamber and its effluent over time The mass balance on the third chamber is

$$V_3 \frac{dC_4}{dt} = QC_3 - QC_4 \tag{B6}$$

where, V_3 is the volume of the third chamber, and

 C_4 is the concentration of the tracer in the third chamber over time

The differential equations (Eq (1)–Eq (4)) were integrated, and rearranged to solve for the concentration of conservative tracer in each of the reactors and their effluents (assuming completely mixed conditions). Unlike the familiar model for CMFRs in series with equal volumes, the mathematics do not simplify to a simple expression.

The concentration of tracer in the barrier chamber and its effluent can be modeled as:

$$C_1 = C_0 e^{\frac{-t}{\Theta_1}}$$
(B7)

where, C_0 is the concentration in the barrier area immediately after of the injection of the tracer, assuming completely mixed conditions, and

 θ_1 is the hydraulic retention time of barrier area.

The concentration of tracer over time in the first chamber of the RBC, C₂, can be modeled as:

$$C_2 = \frac{C_0}{1 - \frac{\Theta_2}{\Theta_1}} (e^{\frac{-t}{\Theta_1}} - e^{\frac{-t}{\Theta_2}})$$
(B8)

where, θ_2 is the hydraulic retention time in the first chamber.

The concentration of tracer over time in the second chamber, C_3 , can be modeled as:

$$C_{3} = \frac{C_{0}}{\left(1 - \frac{\theta_{2}}{\theta_{1}}\right)^{2}} \left(e^{\frac{-t}{\theta_{1}}} - e^{\frac{-t}{\theta_{2}}}\right) - \frac{C_{0}}{\theta_{2}\left(1 - \frac{\theta_{2}}{\theta_{1}}\right)} \left(t e^{\frac{-t}{\theta_{2}}}\right)$$
(B9)

where, θ_2 is the hydraulic retention time in the second chamber.

The concentration of tracer over time in the third chamber, C_4 , can be modeled as:

where, θ_{3} is the hydraulic retention time in the third chamber.

C. Engineering Process Model

C1. Process flow of Model Scenarios

The following process flow diagrams were created in CapdetWorks.

Figure C.1 Process flow for the anaerobic treatment scenario, using an ABR.

Figure C.2 Process flow for the aerobic treatment scenario, using an RBC+AD.

Figure C.3 Process flow for the anaerobic followed by aerobic treatment scenario, using an ABR+RBC+AD.

C2. Building the Process Engineering Models

Units	Value ± SD
MGD	2
mg/L	171 ± 132
mg/L	147 ± 103
mg/L	241 ± 99
mg/L	92 ± 30
mg/L	531 ± 217
mg/L	203 ± 66
	Units MGD mg/L mg/L mg/L mg/L mg/L

Table C.1 Influent wastewater characteristics (value \pm standard deviation) used for the modeling framework, from the Milton Regional Sewer Authority (MRSA) Milton, PA.⁵

Process	Parameter	Unit	ABR	RBC	ABR+RBC
	Effluent COD	mg/L	90 ⁵	-	90 ⁵
	Effluent dissolved CH ₄	mg/L	27 ⁵	-	27 ⁵
ABR	Effluent dissolved CH4 as COD	mg/L	1085	-	1085
	Gaseous CH ₄ production	m ³ /d	547	-	547; ⁵
	Influent COD	mg/L	-	255†	90 ⁵
RBC	Influent Dissolved CH ₄ as COD	mg/L	-	-	1085
120	Electricity	kWh/d	-	396	337
	Effluent BOD5	mg/L	-	30	30
	Mixing, electricity	kWh/d	-	48	24
	Heat losses	MJ/d	-	3.57 E+02	2.57 E+02
Anaerobic	Heat consumed	MJ/d	-	1.78 E+03	8.92 E+02
digestion	Gaseous CH ₄ production	m ³ /d	-	350	176
	Construction, AD plant for sewage sludge	piece	-	5.61 E-02	1.74 E-02
	Electricity generated	kWh/d	1.33 E+03	8.67 E+02	1.75 E+03
Cogeneration	Heat generated	MJ/d	7.04 E+03	4.81 E+03	9.39 E+03
	Construction, heat and power cogeneration unit, 160 kW _e	piece/d	3.12 E-05	2.06 E-05	3.12 E-05
Dewatering,	Land occupation	m ²	7415	-	-
sludge drying	Sand	kg	1.82 E+04 ⁵	-	-
bed	Gravel	kg	3.81 E+05 ⁵	-	-
Dewatering,	Electricity	kWh/d	-	71	43
belt filter	Acrylonitrile (polymer)	kg/d	-	8.0	4.9
Sludge disposal	Solid waste treated, sanitary landfill (TS)	kg/d	111	390	266
(landfill)	Sludge transport, freight, lorry	kg*km/d	1.13 E+04	3.92 E+04	2.66 E+04
	Nitrogen fertilizer avoided	kg/d	2.5	8.5	5.8
	Phosphorus fertilizer avoided	kg/d	2	6.8	4.7
Sludge	Quicklime	kg/d	28	96	65
disposal (land	Electricity, consumed	kWh/d	8.1	47	29
application)	Diesel, from crude oil, consumption mix	kg/d	0.1	0.58	0.36
	Solids for land application	kg/d	136	477	325
	Sludge transport, freight, lorry	kg*km/d	6.88 E+03	2.37 E+04	1.61 E+04

Table C.2 Life cycle inventory for 15–20°C treatment for 2 MGD of domestic wastewater (base case values).

[†] Estimated from Primary effluent at MRSA.

C3. Normalization Factors

	United States	Europe	Units
Resource Depletion	203,000	152,000	MJ Primary/Point
Human Health	0.0388	0.0071	DALY/Point
Ecosystem Quality	4,380	13,700	PDF-m2-yr/Point
Climate Change	20,600	9,950	kg CO2-eq/Point

Table C.3 Factors used for normalization of damage category impacts (adapted from Lautier et al., 2010).⁶

C4. Uncertainty Analysis

Table C.4 Base Case (Most Likely), Minimum (or Standard Deviation for Normal and Lognormal Distributions), and Maximum Values and Distribution Types Used for Uncertainty Analysis

Component	Input Parameter	Value	Units	Distribution	SD	min	max
ABR	Specific CH ₄		L/g				
	Production (gas)	0.17	CODr	Lognormal	2+		
	Total Solids Volatile Solids	252	mg/L	Triangular		90	336
	Destroyed	1060	mg/L	Triangular		318	3498
	Effluent BOD5	60	mg/L	Normal	36		
	Effluent COD	90	mg/L	Normal	50		
	Influent COD	531	mg/L	Normal	378		
	Dissolved CH ₄	27	mg/L	Normal	6		
RBC	Electricity						
	Consumption	140000	kWh/year	Triangular		112,000	168,000
ABR+RBC	Electricity	102000	1 3371 /	т: 1		00.400	147 (00
	Consumption	123000	kwh/year	Iriangular		98,400	147,600
	Removal	0.8	%	Triangular		0.64	0.96
Gravity		0.0	kg /kg of			0.01	0170
Thickening	Polymer Thickening	0.005	dry solids	Triangular		0.003	0.007
Anaerobic	VS destroyed	56	%	Triangular		50	62
Digestion			m ³ biogas/	U			
	Biogas Yield	0.94	$kg VS_r$	Triangular		0.75	1.12
	CH4 Content, biogas	65	%	Triangular		60	70
			kW/m ³				
	Power, mixing	0.0065	digester	Triangular		0.005	0.008
Combined	Fugitive CH ₄	2.1	0/	TT 1		1 7	5.0
Heat and	emissions	3.1	%	Iriangular		1./	5.2
Power System	Electrical efficiency	25	%	Uniform		24	31
Sludge Disposal	Disposed Solids ABR	252	kg/d	Uniform		90	336
Landfill	Transport Distance	50	km	Triangular		<u>1</u> 0	160
Land Application	Transport distance	50	km	Triangular		10	160

[‡] Geometric Standard deviation

C5. Technoeconomic analysis

General Assumptions

- Default values from the CapdetWorks ⁷ software package were used for building the engineering process models except for the parameters listed in Table C.4. The parameters listed in Table C.4 were adjusted based on experimental results from previous anaerobic experiments ^{5,8} and experimental results for methane oxidation in a rotating biological contactor (RBC) reported in this paper.
- Assumed life time to be 15 years for RBC units, 20 years for mechanical components, 25 years for pumps and 40 years for structural components.⁹
- Default assumptions in CapdetWorks:
 - Nutrient removal was not modeled in any of the physical, biological or chemical processes. The only reduction in nutrients is due to anaerobic growth.
 - Clarifiers were designed based on average flow rate.
- For screening and grit removal, the screening equipment was assumed to be cleaned manually (Wade, 2015).
- All systems were modeled to operate at 20⁰ C, except for anaerobic digestion, which was operated at 35°C, and with a pH of 7.4 (Sills, 2016).
- Measured influent COD to SCOD ratio (Wade, 2015) was used for influent BOD to SBOD conversions.
- Anaerobic Baffled Reactor (ABR):
 - ABR modeled as one UASB with an HRT of 0.55 days.⁸
- Percentage of TSS removal in Primary Clarifier was assumed to be 60%.¹⁰
- Fraction of VSS in TSS was assumed to be 0.725 for RBC and secondary clarifier effluents.¹¹
- Anaerobic Digestion:
 - One primary digester tank, and an additional digester tank to be operated during the cleaning of the primary tank.
 - Sized the digester based on total volatile solids entering the digester from the gravity thickener.
- A check was conducted to ensure that a 1 m belt will be sufficient for Belt Filter Press following method from Tchobanoglous et al. (2003)
- Solids disposal:
 - Sludge was stabilized by adding 200 kg of lime per ton of solids.⁸
 - Two 12-ton dumpsters were purchased for the model. The dumpsters are to be filled in an alternating manner, so that when one is full and is trucked off site for disposal, the second can be filled.
 - One dumpster was accounted for in the construction phase for landfill, and the second in the construction phase for land application.
 - Dumpsters were changed every 30 years (CAPDETWorks Default for the truck).
 - Transportation of sludge was contracted out to a trucking company based on information from MRSA.
- Combined heat and power (CHP)
 - CHP was sized at 54.8, 36.6 and 73.8 kW for ABR, RBC and ABR+RBC respectively, based on methane production from ABR and AD.
- The combined treatment system (ABR+RBC) was modeled with experimental results for the ABR,⁸ and included the dissolved methane in the ABR effluent as an influent for the RBC.

Table C.5 Input and design parameters used to model unit processes for the three treatment scenarios: ABR, RBC, ABR + RBC, with their respective distributions were applicable, or minimum and maximum values used (in parenthesis). Design parameters not listed used the CapdetWorks defaults. Grey shading was used when the assembly did not have the treatment unit (such as an ABR unit for the RBC+AD assembly).

Unit Process	Design Criteria	Units	ABR	RBC+ AD	ABR+RBC
ABR	HRT	day	0.535		0.535
	Volume	m ³	4013 ⁸		4013 ⁸
	Construction Multiplier	\$/m ³	219¶		219§
	Sludge Loading Rate	kg COD/ (kg VSS d)	18		18
	COD Removal	%	0.958		0.95 ⁸
	Specific CH ₄ Production (gas)	$L/g COD_r$	0.17^{5}		0.17^{5}
	Influent Sulfate	mg/L	305		30 ⁵
	Influent Solids Retention	%	0.9558		0.955 ⁸
	Yield of Acidogens		0.165		0.165
	Yield of Methanogens		0.0355		0.0355
	Yield of Sulphidogens		0.057^{5}		0.057^{5}
	Sludge Flow	MGD	0.0104		0.0362
Primary	Side water depth	ft		145	
Clarifier	Weir overflow rate	gal/(ft d)		127005	
	Diameter	ft		50 ⁵	
RBC	Number of stages	piece		4	4
	Media surface area	m ²		498807	59180 ⁷
	Media surface area in first stage	m ²		272207	355807
	Hydraulic Loading Rate	$m^3/(m^2.day)$		0.137	0.15 ⁷
	Contactor underflow Solids	mg/L		100.4 7	105 ⁷
	Electricity consumption	kWh/year		1400007	1230007
	Dissolved CH ₄ Removal	%			0.8
Gravity	Depth	m		3	3.5 ⁵
Thickening	Mass loading	kg/(m ² .hr)		2	2.05
Anaerobic	Specific Gravity			1	.028
Digester	VS destroyed	%		50	5.010
	Biogas Yield	m³biogas/ kg VS _r		0.	94 ¹⁰
	CH ₄ Content, biogas	%		6	5 ¹⁰
	Power, mixing	kW/m ³ digester		0.0	06510
CHP	Fugitive CH ₄ Emissions	%		3.113	
	Electrical efficiency	%		25 14	
Belt Filter	Cake solids content	%		4	22 ⁵
Press	Hydraulic loading	L/s		2	2.35
	Polymer dose	% dry weight		0	.555
Drying Beds	Depth applied	in	105		
	Time to drain	day	105		
	Final Solids	%	605		
	Lime added	kg/ Ton of solids	2008,15		
Landfill	Percent sludge disposed	%		4516	
	Transport distance	km		5012	
Land	Percent sludge disposed	%		55 ¹⁶	
Application	Transport distance	km		5012	

[¶]Construction multiplier calculated as: 1783 x Volume^{-0.2528}

Cost Assumptions used in in CapdetWorks:

- This is a Class 4 estimate using parametric models and factoring in the pricing of equipment. The margins on this estimation are 15-30% on the lower end, and 20-50% on the higher end.¹⁷
- Used default values for unit costs, labor rates, chemical costs, cost indices and equipment costs.
- Used RS Means location factor adjustment of 0.97 for Harrisburg, PA.¹⁸
- Calculated land costs to be 6400 dollars per acre¹⁹ using a year conversion index of 191.2 for 2011 and 222.9 for 2018.¹⁷
- Converted capital and operation costs from 2018 USD to 2022 USD by using inflation factor of 1.1343.²⁰

Table C.6 Additional cost assumptions used for capital costs calculated in CapdetWorks as well as for combined heat and power system (Source: CapdetWorks).⁷

Additional Cost Assumptions	Value (%)
Engineering Design Fee	15
Miscellaneous	5
Administration/Legal	2
Inspection	2
Contingency	10
Technical	2
Profit and Overhead	15

D. Supplementary Results

Figure D.1 Base case environmental impact for ReCiPe midpoint (H) categories (a) Aquatic acidification (kg SO₂ eq.), (b) Aquatic ecotoxicity (kg TEG water), and (c) Aquatic Eutrophication (kg PO₄ P-lim) for three treatment scenarios: ABR, RBC+AD and ABR+RBC. Harmful impacts are represented by values with positive magnitudes, and beneficial impacts are represented by values with negative magnitudes. Net impacts are shown as black diamonds.

Figure D.2 Base case environmental impact for ReCiPe midpoint (H) categories (a) Carcinogens (kg C_2H_3Cl eq.), (b) Noncarcinogens (kg C_2H_3Cl eq.), and (c) Global Warming (kg CO_2 eq.) for three treatment scenarios: ABR, RBC+AD and ABR+RBC. Harmful impacts are represented by values with positive magnitudes, and beneficial impacts are represented by values with negative magnitudes. Net impacts are shown as black diamonds.

Figure D.3 Base case environmental impact for ReCiPe midpoint (H) categories (a) Ionizing radiation (Bq C-14 eq.), (b) Land occupation (m²org.arable), and (c) Mineral extraction (MJ surplus) for three treatment scenarios: ABR, RBC+AD and ABR+RBC. Harmful impacts are represented by values with positive magnitudes, and beneficial impacts are represented by values with negative magnitudes. Net impacts are shown as black diamonds.

Figure D.4 Base case environmental impact for ReCiPe midpoint (H) categories (a) Non-renewable energy (MJ primary), (b) Ozone layer deletion (kg CFC-11 eq.), and (c) Respiratory inorganics (kg $PM_{2.5}$ eq.) for three treatment scenarios: ABR, RBC+AD and ABR+RBC. Harmful impacts are represented by values with positive magnitudes, and beneficial impacts are represented by values with negative magnitudes. Net impacts are shown as black diamonds.

Figure D.5 Base case environmental impact for ReCiPe midpoint (H) categories (a) Respiratory Organics (kg C_2H_4 eq.), (b) Terrestrial Acidification/Nutri (kg SO₂ eq.) and (c) Terrestrial ecotoxicity (kg TEG soil) for three treatment scenarios: ABR, RBC+AD and ABR+RBC. Harmful impacts are represented by values with positive magnitudes, and beneficial impacts are represented by values with negative magnitudes. Net impacts are shown as black diamonds.

D2. Capital and Operating Costs

Process	ABR	RBC+AD	ABR+RBC
Preliminary Treatment	279,038	279,038	279,038
ABR	1,361,160	0	1,361,160
Primary Clarification	0	291,515	0
RBC	0	973,229	851,859
Secondary Clarifier	0	468,466	467,332
Drying Beds	360,707	0	0
Gravity Thickening	0	112,182	112,182
Anaerobic Digestion	0	1,985,025	1,985,025
Belt-Filter Press	0	921,052	921,052
Aggregate Disposal	12,341	20,928	10,368
Cogeneration	167,209	168,632	225,184
Other Costs	7,685,087	9,528,120	10,221,456
Total	9,865,542	14,748,187	16,434,655

Table D.1 Capital costs in 2022 USD for three process assemblies designed to treat 2 MGD: anaerobic baffled reactor (ABR), rotating biological contactor (RBC) + anaerobic digestion (AD) and ABR+RBC.

Table D.2 Yearly operating costs in 2022 USD for three process assemblies designed to treat 2 MGD: anaerobic baffled reactor (ABR), rotating biological contactor (RBC) + anaerobic digestion (AD) and ABR+RBC.

Process	ABR	RBC+AD	ABR+RBC
Preliminary Treatment	71,744	71,971	72,312
ABR	189,893	0	191,027
Primary Clarification	0	60,643	0
RBC	0	50,646	44,408
Secondary Clarifier	0	77,287	76,033
Drying Beds	47,584	0	0
Gravity Thickening	0	12,958	12,754
Anaerobic Digestion	0	82,123	81,329
Belt-Filter Press	0	6,395	6,383
Aggregate Disposal	13,817	50,301	17,561
Cogeneration	-38,428	-25,429	-51,633
Other Costs	193,965	193,965	19,397
Total	478,576	580,863	644,139

E. Bibliography

- 1 C. P. L. Grady, G. T. Daigger, N. G. Love and C. D. M. Filipe, *Biological Wastewater Treatment, Third Edition*, CRC Press, 2011.
- 2 M. Hatamoto, H. Yamamoto, T. Kindaichi, N. Ozaki and A. Ohashi, Biological oxidation of dissolved methane in effluents from anaerobic reactors using a down-flow hanging sponge reactor, *Water Res.*, 2010, **44**, 1409–1418.
- 3 M. Hatamoto, T. Miyauchi, T. Kindaichi, N. Ozaki and A. Ohashi, Dissolved methane oxidation and competition for oxygen in down-flow hanging sponge reactor for post-treatment of anaerobic wastewater treatment, *Bioresour. Technol.*, 2011, **102**, 10299–10304.
- 4 J. R. Mihelcic and J. B. Zimmerman, *Environmental Engineering: Fundamentals, Sustainability, Design*, Wiley, 2009.
- 5 D. L. Sills, V. L. Wade and T. D. DiStefano, Comparative Life Cycle and Technoeconomic Assessment for Energy Recovery from Dilute Wastewater, *Environ. Eng. Sci.*, 2016, **33**, 861–872.
- 6 A. Lautier, R. K. Rosenbaum, M. Margni, J. Bare, P.-O. Roy and L. Deschênes, Development of normalization factors for Canada and the United States and comparison with European factors, *Sci. Total Environ.*, 2010, **409**, 33–42.
- 7 Hydromantis ESS, Inc., *CapdetWorks Preliminary Design and Costing Software*, Hydromantis Environmental Software Solutions, Inc., Hamilton, Canada, 2014.
- 8 V. Wade, Master's Thesis, Bucknell University, 2015.
- 9 A. R. Pfluger, J. L. Callahan, J. Stokes-Draut, D. F. Ramey, S. Gagen, L. A. Figueroa and J. Munakata-Marr, Lifecycle Comparison of Mainstream Anaerobic Baffled Reactor and Conventional Activated Sludge Systems for Domestic Wastewater Treatment, *Environ. Sci. Technol.*, 2018, **52**, 10500–105010.
- 10 G. Tchobanoglous, F. L. Burton and H. D. Stensel, *Wastewater Engineering: Treatment and Reuse*, McGraw-Hill Science/Engineering/Math, Blacklick, Ohio, U.S.A., 2003.
- 11 P. A. Vesilind, Ed., Wastewater Treatment Plant Design, IWA Publishing, 2003, vol. 2.
- 12 MRSA, 2019.
- 13 T. K. Flesch, R. L. Desjardins and D. Worth, Fugitive methane emissions from an agricultural biodigester, *Biomass Bioenergy*, 2011, **35**, 3927–3935.
- 14 US EPA, Biomass CHP Catalog of Technologies, 2015.
- 15 A. L. Smith, L. B. Stadler, L. Cao, N. G. Love, L. Raskin and S. J. Skerlos, Navigating Wastewater Energy Recovery Strategies: A Life Cycle Comparison of Anaerobic Membrane Bioreactor and Conventional Treatment Systems with Anaerobic Digestion, *Environ. Sci. Technol.*, 2014, **48**, 5972–5981.
- 16 N. B. and R. A. NEBRA, A National Biosolids Regulation, Quality, End use and Disposal Survey— Preliminary Report, April 14, 2007, NEBRA (Northeast Biosolids and Residuals Association), 2007.
- 17 Department of Energy (DOE), *Cost Estimate Classification System As Applied in Engineering, Procurement and Construction for the Process Industries*, AACE International, Washingtong, D.C., 2005.
- 18 P. Waier and A. Charest, *RSMeans Building Construction Cost Data 2013*, RS Means, Kingston, MA, 76th edn., 2018.
- 19 National Agriculture Statistic Service, *Land Values Methodology and Quality Measures*, United States Department of Agriculture (USDA), PA Office, 2011.
- 20 CPI Inflation Calculator, https://www.bls.gov/data/inflation_calculator.htm, (accessed 17 June 2022).