Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2022

Supporting Information for

Piezoelectric Catalytic Performance of BaTiO3 for Sulfamethoxazole

Degradation

Yanning lv, Minghao Sui*, Xinyuan Lv, and Jingni Xie

State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China

* Corresponding author: Email: minghaosui@tongji.edu.cn, Tel: +86-21-65982691, Fax: +86-21-6598631

Submitted to

Environmental Science Water Research & Technology

Summary:

Table S1: Parameters during the optimization of BTO;

Table S2: Corresponding experimental conditions and performance of BTO samples during

the optimization by orthogonal design;

Table S3: Variance analysis;

Table S4: Mean response analysis;

Figure S1: Zeta potential of BTO nanoparticles as a function of pH;

Figure S2: XRD patterns (the inserted lines correspond to the JCPDS data of No. 05-0626) of

BTO nanoparticles after recycling experiments.

Figure S3: The leached concentration of Ti^{4+} ions (a) and Ba^{2+} ions (b) during the piezoelectric catalytic degradation of SMX;

Figure S4: Effect of initial concentration of Cl⁻ (a), initial concentration of NO_3^- (b), initial concentration of Ca^{2+} (c), and initial concentration of Mg^{2+} (d) on the piezoelectric catalytic degradation of SMX as a function of reaction time;

Factors	A Ba/Ti	B [NaOH] (M)	C T (°C)	D T (h)	E EtOH (%)
1	0.5:1	0	120	4	0
2	1:1	0.25	140	8	25
3	1.5:1	0.5	160	12	50
4	2:1	0.75	180	20	75
5	2.5:1	1	200	24	100

Table S1. Parameters during the optimization of BTO.

Table S2. Corresponding experimental conditions and performance of BTO samples during the optimization by orthogonal design.

BTO-number	Ba/Ti	[NaOH] (M)	T (°C)	t (h)	EtOH (%)	Empty column	*Performance (%)
BTO-1	0.5/1	0	120	4	0	1	66.1
BTO-2	1	1	120	8	50	4	83.9
BTO-3	1.5/1	0.75	120	12	100	2	86.5
BTO-4	2	0.5	120	20	25	5	84.6
BTO-5	2.5/1	0.25	120	24	75	3	82.3
BTO-6	2.5/1	0.5	140	4	100	4	56.2
BTO-7	0.5/1	0.25	140	8	25	2	66.1
BTO-8	1	0	140	12	75	5	59.2
BTO-9	1.5/1	1	140	20	0	3	61.7
BTO-10	2	0.75	140	24	50	1	68.2
BTO-11	2	1	160	4	75	2	55.0
BTO-12	2.5/1	0.75	160	8	0	5	79.7
BTO-13	0.5/1	0.5	160	12	50	3	82.9
BTO-14	1	0.25	160	20	100	1	67.4
BTO-15	1.5/1	0	160	24	25	4	73.0
BTO-16	1.5/1	0.25	180	4	50	5	63.6
BTO-17	2	0	180	8	100	3	70.1
BTO-18	2.5/1	1	180	12	25	1	73.2
BTO-19	0.5/1	0.75	180	20	75	4	73.6
BTO-20	1	0.5	180	24	0	2	75.5
BTO-21	1	0.75	200	4	25	3	63.2
BTO-22	1.5/1	0.5	200	8	75	1	60.9
BTO-23	2	0.25	200	12	0	4	87.9
BTO-24	2.5/1	0	200	20	50	2	68.4
BTO-25	0.5/1	1	200	24	100	5	82.3

* Performance (%): Degradation rate of SMX in the presence of BTO samples and ultrasonic irradiation.

(Conditions: ultrasonic frequency: 45 kHz, ultrasonic power 300 W, reaction volume: 20 ml, initial SMX

concentration: 1 mg \cdot L⁻¹, BTO dosage: 0.05 g, and the reaction time is 12 min.)

Source	*DOF	Adj SS	Adj MS	*F value	*F _{0.05}
А	4	2298.2	574.55	3.13	2.49
В	4	172	43.01	0.23	
С	4	1135.4	283.84	1.55	
D	4	292.9	73.23	0.4	
Е	4	2399.2	599.79	3.27	
Deviation	4	734.5	183.63		
Sum	24	7032.2			

Table S3. Variance analysis.

*DOF: Degree of freedom.

*F value: Significance of the influence of the factors.

 $*F_{0.05}$: $F_{0.05} < 3.13$ and 3.27. This indicated the significant influence of the addition amount of ethanol and the feed ratio.

Factors	А	В	С	D	Е	F
K ₁	371	336.8	403.4	304.1	370.9	335.8
K ₂	349.2	367.3	311.4	360.7	360.1	351.5
K ₃	345.7	360.1	358	389.7	367	360.2
K_4	345.7	371.2	356	355.7	331	374.6
K ₅	359.8	356.1	362.7	381.3	362.5	369.4
\mathbf{k}_1	74.2	67.36	80.68	60.82	74.18	67.16
\mathbf{k}_2	69.84	73.46	62.28	72.14	72.02	70.3
\mathbf{k}_3	69.14	72.02	71.6	77.94	73.4	72.04
\mathbf{k}_4	69.14	74.24	71.2	71.14	66.2	74.92
\mathbf{k}_5	71.96	71.22	72.54	76.26	72.5	73.88
R	5.06	6.88	18.4	17.12	7.98	7.76
Rank	6	5	1	2	3	4
Correlation	negative & positive	positive	positive	positive	negative & positive	-
*Optimized BTO	A ₅	B_2	C ₅	D_5	E ₅	

Table S4. Mean response analysis.

*Optimized BTO: The results of optimization process for preparing BTO with significant performance.

Figure S1. Zeta potential of BTO nanoparticles as a function of pH.

Figure S2. XRD patterns (the inserted lines correspond to the JCPDS data of No. 05-0626) of BTO nanoparticles after recycling experiments.

Figure S3. The leached concentration of Ti^{4+} ions (a) and Ba^{2+} ions (b) during the piezoelectric catalytic degradation of SMX. (Conditions: ultrasonic frequency: 45 kHz, ultrasonic power 300 W, reaction volume: 20 ml, initial SMX concentration: 1 mg·L⁻¹, BTO dosage: 0.05 g, and the reaction time is 15 min.)

Figure S4. Effect of initial concentration of Cl⁻ (a), initial concentration of NO_3^- (b), initial concentration of Ca^{2+} (c), and initial concentration of Mg^{2+} (d) on the piezoelectric catalytic degradation of SMX as a function of reaction time. (Conditions: ultrasonic frequency: 45 kHz, ultrasonic power 300 W, reaction volume: 20 ml, initial SMX concentration: 1 mg·L⁻¹, BTO dosage: 0.05 g.)