Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2022

Supplementary information for

3D micro-meso-structured iron-based hybrid for peroxymonosulfate activation: Performance, mechanism and comprehensive practical application potential evaluation

Yanling Chen^a, Yajie Chen^a, Xue Bai*ab

^aKey Laboratory of Integrated Regulation and Resource Development on Shallow

Lake of Ministry of Education, College of Environment, Hohai University, Nanjing

210098, China

^bYangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China

*Corresponding author.

Telephone: +86 15951940543

E-mail address: baixue@hhu.edu.cn (X. Bai).

Number of pages: 9

Number of figures: 4

Number of tables: 3

Fig. S1 (a) First-order kinetic constants in different catalytic systems. Effects of MIL-88A-CS concentration (b), PMS concentration (c) and pH (d) on the TC-HCl degradation in MIL-88A-CS/PMS system. Experimental parameters: (a) [MIL-88A-CS] = 1.0 g/L, [PMS] = 0.2 mM, [TC-HCl] = 30 mg/L, and pH = 7; (b) [PMS] = 0.2 mM, [TC-HCl] = 30 mg/L, and pH = 7; (c) [MIL-88A-CS] = 1.0 g/L, [TC-HCl] = 30 mg/L, and pH = 7; (d) [MIL-88A-CS] = 1.0 g/L, [TC-HCl] = 30 mg/L, and pH = 7; (d) [MIL-88A-CS] = 1.0 g/L, [TC-HCl] = 30 mg/L, and [PMS] = 0.2 mM. All reactions were conducted at room temperature.

Fig. S2 (a) Leached Fe ions during the degradation process of TC-HCl. (b) The removal efficiency of TC-HCl in different catalytic systems (Experimental conditions: [Leached Fe ions]₀ = 0.3 mg/L, [PMS]₀ = 0.2 mM, [TC-HCl] = 30 mg/L, and pH = 7).

Fig. S3 The removal efficiency of TC-HCl with different initial pH values by PMS alone (Experimental conditions: $[PMS]_0 = 0.2 \text{ mM}$, [TC-HCl] = 30 mg/L).

Fig. S4 LC-MS chromatogram for the TC-HCl degradation in the MIL-88A-CS/PMS system.

Catalyst	Dosage		Leached Fe ions concentration	n D-f
	(mg/L)	рн	(mg/L)	Kei.
MIL-53(Fe)	600	6.0	0.37	1
MIL-88B(Fe)	600	6.5	4.00	2
MIL-101(Fe)	500	3.0	0.46	3
MIL-88A-CS	1000	7.0	0.30	This work

Table S1 Comparison of the leached Fe ions of some reported Fe-based MOFscatalysts in SR-AOPs.

	pН	TOC (mg/L)	NH4 ⁺ -N (mg/L)	DO (mg/L)
Tap water	7.3	4.6	0.03	4.47
Lake water	7.3	150.3	0.67	6.46
River water	7.2	274.1	1.25	7.32

 Table S2 The parameters of different water matrixes.

Develation contains	Polltant	k _{obs}	EE/O	Def
Degradation system	(concentration)	(min ⁻¹)	(kWh/m ³)	Kel.
$Fe^{2+} + MoS_2 + PMS$	Rhodamine B (10 mg/L)	0.029	27.0	4
US1000kHz + PMS	Ibuprofen (5 mg/L)	0.017	314.4	5
$g-C_3N_4 + 400-LED + PMS$	Acid Orange 7 (10 mg/L)	0.094	24.5	6
MIL-88A-CS + PMS	Tetracycline (1 g/L)	0.054	20.3	This work

 Table S3 Comparison of EE/O values in various degradation systems.

References

- 1 Y. Gao, S. Li, Y. Li, L. Yao and H. Zhang, Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate, *Appl. Catal. B: Environ.*, 2017, 202, 165-174.
- J. Lin, Y. Hu, L. Wang, D. Liang, X. Ruan and S. Shao, M88/PS/Vis system for degradation of bisphenol A: Environmental factors, degradation pathways, and toxicity evaluation, *Chem. Eng. J.*, 2020, **382**, 122931.
- 3 H. Hu, H. Zhang, Y. Chen, Y. Chen, L. Zhuang and H. Ou, Enhanced photocatalysis degradation of organophosphorus flame retardant using MIL-101(Fe)/persulfate: Effect of irradiation wavelength and real water matrixes, *Chem. Eng. J.*, 2019, **368**, 273-284.
- 4 D. He, Y. Cheng, Y. Zeng, H. Luo, K. Luo, J. Li, X. Pan, D. Barcelo and J. C. Crittenden, Synergistic activation of peroxymonosulfate and persulfate by ferrous ion and molybdenum disulfide for pollutant degradation: Theoretical and experimental studies, *Chemosphere*, 2020, 240, 124979.
- 5 Y. Lee, S. Lee, M. Cui, Y. Ren, B. Park, J. Ma, Z. Han and J. Khim, Activation of peroxodisulfate and peroxymonosulfate by ultrasound with different frequencies: Impact on ibuprofen removal efficient, cost estimation and energy analysis, *Chem. Eng. J.*, 2021, **413**, 127487.
- 6 S. Kokate, S. Gupta, V. G. Kopuri and H. Prakash, Energy efficient photocatalytic activation of peroxymonosulfate by g-C₃N₄ under 400 nm LED irradiation for degradation of Acid Orange 7, *Chemosphere*, 2022, 287, 132099.