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Figure 1: Synchrotron-source X-ray diffraction patterns for other DWTR sam-
ples not the focus of this study. Data were collected using the same methodol-
ogy described in the Material and Methods’ section. The same phases identified
in the main DWTR samples are identified in these other samples in varying
combinations, which include clay (illite and/or smectite), feldspar (albite and
microcline), carbonate minerals (calcite and dolomite), and quartz. Again, not
present in these samples are crystalline iron oxides or aluminum oxides.
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Figure 2: Laboratory-source X-ray diffraction patterns for the six DWTR sam-
ples. Data were collected using a Rigaku Ultima IV with a Cu X-ray source
at the Jerome B. Cohen X-Ray Diffraction Facility at Northwestern Univer-
sity, Evanston, IL. Patterns for highly-crystalline components, such as quartz
and calcite, remain easily identifiable, though peaks for feldspars are indistinct,
and the diffraction peak for dolomite in DWTR-WY is not observed in the

laboratory-source XRD.
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Figure 3: Pourbaix diagram showing stable iron phasers in solution. Calcu-
lations were performed and plotted using Phreeplot software! and WATEQ4F
thermodynamic database?. Calculations are based on 100 pM total Mn, 100
pM total S, equilibrium with 425 ppm atmospheric CO,, and 25°C tempera-
ture. Hematite is not included in the calculations here to emphasize iron phases
that are more easily formed through surface water processes.
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Figure 4: Principal components analysis of Fe K-edge first-derivative XANES
spectra for drinking water treatment residuals. The left subplot visualizes the
principal components. First, the mean first-derivative XANES spectrum cal-
culated from all the DWTR sample spectra is plotted. Principal components
are calculated based on the distance of the samples from the mean across each
spectrum. The components plotted in the left subplot are therefore added or
subtracted from the mean spectrum to approximately recreate the sample spec-
tra. PC1 and PC2 are scaled based on the variance they account for within
the Fe K-edge DWTR spectra (85% and 12%, respectively). The right subplot
projects the DWTR samples along with selected standards on the first two prin-
cipal components. Here, it is clear that most of the variance is driven by the
MN sample. This is reflected in the shape of PC1, which shows the shoulder and
small oscillations in the first-derivative XANES that distinguished MN from the
other samples. In the projection of standards, common ferric (or mixed-valence
iron) minerals do not recreate these features. However, a number of spinel fer-
rite minerals, including maghemite, manganese ferrite (jacobsite), copper ferrite
(cuprospinel), and magnesium ferrite (magnesioferrite) do.
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Figure 5: Target transformations of first-derivative Fe K-edge XANES standard
spectra based on principal components calculated from DWTRs. “LBL”3 and
“NIMS” 4® identify databases from which certain spectra were acquired.
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Figure 6: Pourbaix diagram showing stable manganese phases in solution. Cal-
culations were performed and plotted using Phreeplot software! and the WA-
TEQ4F thermodynamic database?. Calculations assume 100 1M total Mn, 100
pM total S, equilibrium with 425 ppm atmospheric CO,, and 25°C temperature.
Pyrolusite (MnO,) and bixbyite (Mn,O4) were not included in calculations to
emphasize manganese species that are more easily formed through surface water
processes.
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