Supplementary Information

Enhanced Electro-peroxymonosulfate Activation by Carbon Nanotube Filter with Functionalized Polyelectrolyte

Cancan Maa, Xiaofeng Fanga,b,*, Shengtao Jiangc, Fang Lia,b, Yanbiao Liua,b

a Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China. E-mail: fxf595@dhu.edu.cn, Tel: +86 21 6779 8752.

b Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China.

c College of Life Science, Taizhou University, Taizhou, Zhejiang 318000, China.
Supplementary Materials: 4 Test and 13 Figures

Table of Content

Test S1. Specific information of tap water and lake water...4

Test S2. Experimental processes of several pollutants..5

Test S3. Energy consumption..6

Test S4. Comparison of the performance of proposed system with reported electrocatalytic filtration systems...7

Fig. S1. Schematic diagram of continuous-flow electrochemical PMS activation device. (1) titanium ring, (2) a PDDA-CNT cathode filter, (3) an insulating silicone rubber separator seal, (4) a perforated titanium sheet. ...8

Fig. S2. FESEM images of (a) pristine CNT, (b) PDDA-CNT90 filter.9

Fig. S3. Comparison of water contact angle of (a) CNT and (b) PDDA-CNT filter...10

Fig. S4. CV data of CNT and PDDA-CNT filters in 0.1 M KOH at a scan rate of 50 mV s$^{-1}$. ...11

Fig. S5. TGA curves of CNT, and various PDDA-CNT samples.12

Fig. S6. FT-IR spectra of PDDA, CNT and PDDA-CNT filters.13

Fig. S7. Effect of PMS alone on the CR degradation performance in PDDA-CNT/PMS system. Experiment conditions: $J = 5$ mL/min, $[CR]_0 = 10$ mg/L, $[PMS]_0 = 1.5$ mM, PDDA: CNT = 10:90, pH = 7.0 ± 0.5, $V = -1$ V. ...14

Fig. S8. of the degradation efficiency of CR with different initial pH. Experiment conditions: $J = 5$ mL/min, $[CR]_0 = 10$ mg/L, $[PMS]_0 = 1.5$ mM, PDDA: CNT = 10:90, $V = -1$ V. ..15
Fig. S9. (a) Degradation of CR after four cycles in PDDA-CNT/PMS system and (b) comparison of CR degradation efficiency in CNT/PMS system and PDDA-CNT/PMS system. Experiment conditions: $J = 5$ mL/min, $[\text{CR}]_0 = 10 \text{ mg/L}$, $[\text{PMS}]_0 = 1.5 \text{ mM}$, PDDA: CNT = 10:90, pH = 7.0 ± 0.5, $V = -1 \text{ V}$..16

Fig. S10. FETEM of PDDA-CNT filter (a) before, and (b) after catalysis.17

Fig. S11. Effect of coexisting ions in PDDA-CNT/PMS system. Experiment conditions: $J = 5$ mL/min, $[\text{CR}]_0 = 10 \text{ mg/L}$, $[\text{PMS}]_0 = 1.5 \text{ mM}$, PDDA: CNT = 10:90, pH = 7.0 ± 0.5, $V = -1 \text{ V}$. ...18

Fig. S12. The degradation efficiency of CR in different water matrixes in PDDA-CNT/PMS system. Experiment conditions: $J = 5$ mL/min, $[\text{CR}]_0 = 10 \text{ mg/L}$, $[\text{PMS}]_0 = 1.5 \text{ mM}$, PDDA: CNT = 10:90, pH = 7.0 ± 0.5, $V = -1 \text{ V}$. ..19

Fig. S13. Degradation efficiency of four typical organic compounds. Experiment conditions: $J = 5$ mL/min, $[\text{CR}]_0 = 10 \text{ mg/L}$, $[\text{PMS}]_0 = 1.5 \text{ mM}$, PDDA: CNT = 10:90, pH = 7.0 ± 0.5, $V = -1 \text{ V}$. ...20

References ...21
Test S1. Specific information of tap water and lake water.

<table>
<thead>
<tr>
<th>Samples</th>
<th>pH</th>
<th>DO (mM)</th>
<th>TOC (mg/L)</th>
<th>Conductivity (µs/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tap water</td>
<td>7.61</td>
<td>0.21</td>
<td>1.75</td>
<td>515.69</td>
</tr>
<tr>
<td>Lake water</td>
<td>7.83</td>
<td>0.19</td>
<td>88.90</td>
<td>675.25</td>
</tr>
</tbody>
</table>

Test S2. Experimental processes of several pollutants.

The prepared PDDA-CNT nanohybrid filter was installed to serve as a cathode, meanwhile a perforated titanium plate was made as an anode. The voltage used in experiments was provided by the DC power (DH1766A-1, China). The flow rate was controlled by an Ismatec ISM833C peristaltic pump (Switzerland). 50 mL of 10 mg/L four typical organic compounds dissolution including 1.5 mM PMS passed through PDDA-CNT nanohybrid filter and then returned, respectively. Effluent samples (3 mL), include congo red, methylene blue and tetracycline were collected and analyzed at given time intervals by UV-vis spectrophotometer (UV-2600, Japan), respectively. Bisphenol A was detected using high-performance liquid chromatography (HPLC, Thermofisher, USA).
Test S3. Energy consumption.

The electric energy consumption (kWh/m3) was calculated using the equation:

\[
\text{Energy consumption} = \frac{\text{applied voltage (V) } \times \text{ current (A) } \times \text{ retention time (h)}}{\text{solution volume (m}^3\text{)}}
\]
Test S4. Comparison of the performance of proposed system with reported electrocatalytic filtration systems.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Pollutants</th>
<th>Operating parameters</th>
<th>Removal efficiency</th>
<th>Energy consumption</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular imprinting-TiO$_2$@SnO$_2$-Sb (A)</td>
<td>2,4-dichlorophenoxyacetic acid (1 mg/L)</td>
<td>3 V 240 7.0</td>
<td>62.4%</td>
<td>0.58 Wh/L</td>
<td>1</td>
</tr>
<tr>
<td>Sb-SnO$_2$/carbon membrane (A)</td>
<td>Tetracycline (50 mg/L)</td>
<td>3 V 480 7.0</td>
<td>96.5%</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CNT-polyvinyl alcohol (A)</td>
<td>Cr (VI) (1 mg/L)</td>
<td>7 V 360 6.0</td>
<td>86.5%</td>
<td>1.48 kWh/m3</td>
<td>3</td>
</tr>
<tr>
<td>Nanoparticulate zero-valent iron/CNT</td>
<td>Betablocker metoprolol (0.2 μmol/L)</td>
<td>1 V 0.1 -</td>
<td>97.0%</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>PDDA-CNT (C)</td>
<td>Congo red (10 mg/L)</td>
<td>-1 V 40 7.0</td>
<td>100%</td>
<td>0.026 kWh/m3</td>
<td>This work</td>
</tr>
</tbody>
</table>

Note: A: anode C: cathode.
Fig. S1. Schematic diagram of continuous-flow electrochemical PMS activation device. (1) titanium ring, (2) a PDDA-CNT cathode filter, (3) an insulating silicone rubber separator seal, (4) a perforated titanium sheet.
Fig. S2. FESEM images of (a) pristine CNT, (b) PDDA-CNT90 filter.
Fig. S3. Comparison of water contact angle of (a) CNT and (b) PDDA-CNT filter.
Fig. S4. CV data of CNT and PDDA-CNT filters in 0.1 M KOH at a scan rate of 50 mV s$^{-1}$.
Fig. S5. TGA curves of CNT, and various PDDA-CNT samples.
Fig. S6. FT-IR spectra of PDDA, CNT and PDDA-CNT filters.
Fig. S7. Effect of PMS alone on the CR degradation performance in PDDA-CNT/PMS system. Experiment conditions: J = 5 mL/min, [CR]₀ = 10 mg/L, [PMS]₀ = 1.5 mM, PDDA: CNT = 10: 90, pH = 7.0 ± 0.5, V = -1 V.
Fig. S8. of the degradation efficiency of CR with different initial pH. Experiment conditions: \(J = 5 \, \text{mL/min}, \, [\text{CR}]_0 = 10 \, \text{mg/L}, \, [\text{PMS}]_0 = 1.5 \, \text{mM}, \, \text{PDDA: CNT} = 10:90, \, V = -1 \, \text{V}. \)
Fig. S9. (a) Degradation of CR after four cycles in PDDA-CNT/PMS system and (b) comparison of CR degradation efficiency in CNT/PMS system and PDDA-CNT/PMS system. Experiment conditions: $J = 5 \text{ mL/min}$, $[\text{CR}]_0 = 10 \text{ mg/L}$, $[\text{PMS}]_0 = 1.5 \text{ mM}$, PDDA: CNT = 10:90, pH = 7.0 ± 0.5, V = -1 V.
Fig. S10. FETEM of PDDA-CNT filter (a) before, and (b) after catalysis.
Fig. S11. Effect of coexisting ions in PDDA-CNT/PMS system. Experiment conditions: $J = 5$ mL/min, $[\text{CR}]_0 = 10$ mg/L, $[\text{PMS}]_0 = 1.5$ mM, PDDA: CNT = 10: 90, pH = 7.0 ± 0.5, $V = -1$ V.
Fig. S12. The degradation efficiency of CR in different water matrixes in PDDA-CNT/PMS system. Experiment conditions: $J = 5 \text{ mL/min}$, $[\text{CR}]_0 = 10 \text{ mg/L}$, $[\text{PMS}]_0 = 1.5 \text{ mM}$, PDDA: CNT = 10: 90, pH = 7.0 ± 0.5, $V = -1 \text{ V}$.
Fig. S13. Degradation efficiency of four typical organic compounds. Experiment conditions: $J = 5 \text{ mL/min}$, $[\text{CR}]_0 = 10 \text{ mg/L}$, $[\text{PMS}]_0 = 1.5 \text{ mM}$, PDDA: CNT = 10:90, $\text{pH} = 7.0 \pm 0.5$, $V = -1 \text{ V}$.
References

