Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Surface Functionalized Poly(vinyl alcohol)-Hydrous Zirconium Oxide Composite

Beads for Efficient and Selective Sequestration of Phosphate from Wastewater

Huayong Luo^a, Mingxuan Zhang^a, Hongwei Rong^a, Zuhao Chen^a, Xueyang

Zeng^a, Jingyin Wang^a, Binhua Liu^a, Peng Liao^{b*}

^aSchool of Civil Engineering, Guangzhou University, Guangzhou, 510006, China

^bState Key Laboratory of Environmental Geochemistry, Institute of Geochemistry,

Chinese Academy of Sciences, Guiyang, 550081, PR China

*Corresponding authors:

Peng Liao

liaopeng@mail.gyig.ac.cn

Number of Pages: 21

Number of Tables: 5

Number of Figures: 9

Data analysis and modeling

Determination of batch adsorption performance

The equilibrium uptake amount $(q_e, mg/g)$ and the uptake amount $(q_t, mg/g)$ at time t of the adsorbent beads were determined by eqs. (S1) and (S2).

$$q_{\rm e} = \frac{(C_o - C_{\rm e}) \times V}{m} \tag{S1}$$

$$q_t = \frac{(C_o - C_t) \times V}{m}$$
(S2)

where $C_o(\text{mg/L})$, $C_e(\text{mg/L})$ and $C_t(\text{mg/L})$ are phosphate concentrations in the aqueous solutions at the initial time, equilibrium time, and time t (min); V is the volume of the aqueous solution (L); and m is the mass of the beads (g).

The desorption efficiency (DE) was determined from eq. (S3).

$$DE = \frac{C \times V}{(q \times m)} \times 100\%$$
(S3)

where *C* is phosphate concentration in the desorption solution (mg/L); *V* is the volume of the desorption solution (L); *q* is the amount of phosphate adsorbed on the adsorbent beads before desorption (mg/g); and *m* is the mass of adsorbent beads (g).

Modeling of adsorption kinetics and isotherms

The adsorption kinetics data were fitted with the non-linear pseudo-first-order model (eq. (S4)), non-linear pseudo-second-order model (eq. (S5)), non-linear Elovich model (eq. (S6)), and intraparticle diffusion model (eq. (S7)), and the equations were presented as follows.¹

Non-linear pseudo-first-order:

$$q_{t} = q_{e}(1 - e^{-k_{1}t})$$
 (S4)

Non-linear pseudo-second-order:

$$q_{t} = \frac{k_{2}q_{e}^{2}t}{1 + k_{2}q_{e}t}$$
(S5)

where q_e (mg-P/g) and q_t (mg-P/g) are the amount of phosphate adsorbed onto the adsorbent at an equilibrium concentration (C_e , mg/L) and a predetermined time (t, min), respectively. k_1 (1/min) and k_2 (g/mg/min) are the rate constants for the pseudo-first-order model and pseudo-second-order model, respectively.

Non-linear Elovich equation:

$$q_t = \left(\frac{1}{\beta}\right) \ln(1 + \alpha\beta t) \tag{S6}$$

where α is regarded as the initial rate (mg g⁻¹ min⁻¹), and the β is adsorption constant (g mg⁻¹).

Intra-particle diffusion model:

$$q_{\rm t} = k_{id} t^{0.5} \tag{S7}$$

where k_{id} (mg/g/min^{0.5}) is the intra-particle diffusion rate constant.

The adsorption isotherms data were fitted by the nonlinear Langmuir model (eq. (S8)) and Freundlich model (eq. (S9)) as follows.^{1,2}

$$q_{\rm e} = \frac{q_{\rm m} k_L C_{\rm e}}{1 + k_L C_{\rm e}}$$
(S8)
$$q_{\rm e} = k_F C_e^{1/n}$$
(S9)

where $q_e \pmod{P/g}$ and $q_m \pmod{P/g}$ denote the adsorption capacity at equilibrium and predicted maximum adsorption capacity. $C_e \pmod{L}$ is the equilibrium phosphate concentration; $k_L (L/mg)$ is the Langmuir adsorption constant; $k_F ((mg/g)(L/mg)^{1/n})$ and *n* represent the Freundlich adsorption constant and heterogeneity factor, respectively. The calculation of distribution coefficient K_d (L/g) was defined as the ratio of adsorbed phosphate to the dissolved phosphate remaining in the solution, which was calculated as follows.³

$$K_d = \frac{V \times (C_0 - C_e)}{m \times C_e}$$
(S10)

where $C_o (\text{mg/L})$ and $C_e (\text{mg/L})$ are phosphate concentrations in the aqueous solutions at the initial time and equilibrium time; V is the volume of the aqueous solution (L); and m is the mass of the beads (g).

Determination of column adsorption performance

The total amount of phosphorus (P) adsorbed onto the adsorbent beads (q_{total} , mg) and the equilibrium adsorption capacity (q_e , mg P/g) were calculated by the following eqs. (S11) and (S12).⁴

$$q_{total} = \frac{Q}{1000} \int_{t=0}^{t=T_{total}} (C_o - C_t) dt$$
 (S11)

$$q_e = \frac{q_{total}}{m} \tag{S12}$$

where Q (mL/min) is the feed flow rate; C_o (mg/L) and C_t (mg/L) represent the influent and effluent P concentration at the initial stage and t time caused by adsorption. T_{total} (min) is the total time when the column achieves the exhaustion point ($C_t/C_0=90\%$); m(g) is the mass of adsorbent beads packed in the column.

Modeling of column adsorption for breakthrough curves

The fixed-bed column adsorption data were fitted by the Thomas model (eq. (S13)) to predict the breakthrough curves.^{1, 2, 4}

$$\ln(\frac{C_o}{C_t} - 1) = k_{Th}q_o \frac{m}{Q} - k_{Th}C_o t$$
 (S13)

where Q (mL/min) is the feed flow rate; C_o (mg/L) is the influent phosphate concentration; C_t (mg/L) is the effluent phosphate concentration at time t (min); k_{Th} (mL/min/mg) is the Thomas rate constant; q_o (mg P/g) is the equilibrium absorption capacity; m (g) is the mass of adsorbent in the column.

Determination of the value of pH at point of zero charge (pH_{pzc})

The pH at point of zero charge (pH_{pzc}) for HZO-PVA and TETA@HZO-PVA was determined by the pH drift method.⁵ Specifically, 20 mg of HZO-PVA or TETA@HZO-PVA was added into 80 mL of 0.1 M NaCl solution at desired pH values (2-12). The initial pH (pH_i) of the aqueous solution was adjusted by HCl or NaOH solution (1 M). The final pH (pH_f) was recorded after continuous stirring at 35 °C for 24 h. Then the pH_{PZC} is the point where the curve of ΔpH (= pH_f - pH_i) versus pH_i crosses the line equal to zero.

Туре	Parameter	HZO-PVA	TETA@HZO-PVA	
	$q_e ({ m mg/g})$	8.80	23.47	
Pseudo-first-order model	$k_1 (\min^{-1})$	0.006	0.009	
	R^2	0.962	0.958	
	$q_e (\mathrm{mg/g})$	9.74	25.54	
Pseudo-second-order model	k_2 (g/mg/min)	8.185×10-4	4.867×10-4	
	R^2	0.993	0.992	
	$\alpha (mg g^{-1} min^{-1})$	0.176	0.963	
Elovich model	$\beta (g m g^{-1})$	0.550	0.236	
	R ²	0.979	0.958	
	$q_{\rm m}$ (mg/g)	31.23	39.87	
Langmuir model	$k_{\rm L}$ (L/mg)	0.058	0.430	
	R^2	0.987	0.956	
	$k_F ((mg/g)(L/mg)^{1/n})$	3.645	16.595	
Freundlich model	n	2.047	4.167	
	R^2	0.989	0.980	

 Table S1. Kinetic and isotherm parameters for phosphate sequestration.

Step	Parameter	HZO-PVA	TETA@HZO-PVA	
Step 1	k_{1d} (mg/g/min ^{0.5})	0.448	1.501	
	R^2	0.977	0.986	
Step 2	$k_{2d} ({ m mg/g/min^{0.5}})$	0.113	0.258	
	R^2	0.957	0.948	

 Table S2. Intraparticle diffusion model parameters for phosphate sequestration.

Somulas	Spacing	Binding	FWHM	Aera	Percentage
Samples	Species	energy (eV)	(eV)	(cps eV)	(%)
	C-0	532.53	1.68	50145.79	54.0
	-OH	530.26	1.68	19422.96	20.9
HZO-PVA	O ²⁻	531.39	1.68	23220.87	25.0
	Zr 3d5/2	182.39	1.32	24033.73	60.0
	Zr 3d3/2	184.77	1.32	16026.68	40.0
	C-0	532.60	1.60	51540.27	52.9
D loaded UZO	-OH	530.39	1.60	17218.51	17.7
	O ²⁻	531.48	1.60	28660.01	29.4
ΓVΑ	Zr 3d5/2	182.60	1.31	22530.13	59.8
	Zr 3d3/2	184.98	1.31	15175.82	40.2

Table S3 Fitting parameters for O 1s and Zr 3d spectra of virgin and P-loaded HZO-PVA.

		Binding	Binding FWHM		Percentage	
Samples	Species	energy (eV)	(eV)	(cps eV)	(%)	
	-NH ₂ , -NH-	399.47	1.64	7932.54	65.9	
	-NH ₃ ⁺ , -NH ₂ ⁺	401.94	1.64 4102.30		34.1	
	C-O	532.45	1.70	53250.56	67.7	
TETA@HZO-PVA	O ²⁻	531.38	31.38 1.70		17.0	
	-OH	530.20	1.70	11985.58	15.2	
	Zr 3d5/2	182.27	1.36	16426.44	60.5	
	Zr 3d3/2	184.65	1.36	10718.57	39.5	
	-NH ₂ , -NH-	399.52	1.58	5445.04	46.3	
	-NH ₃ ⁺ , -NH ₂ ⁺	401.97	1.58 6308		53.7	
P-loaded	C-O	532.60	1.70	69128.38	65.9	
TETA@HZO-PVA at	O ²⁻	531.97	1.70	26626.75	25.4	
pH 2	-OH	530.60	1.70	9153.73	8.7	
	Zr 3d5/2	182.67	1.42	10470.41	58.2	
	Zr 3d3/2	185.05	1.42	7525.38	41.8	
	-NH ₂ , -NH-	399.58	1.72	5144.14	60.6	
P-loaded TETA@HZO-PVA at	-NH ₃ ⁺ , -NH ₂ ⁺	401.92	1.72	3344.58	39.4	
	C-O	532.59	1.66	76511.38	69.3	
	O ²⁻	531.58	1.66	21977.44	19.9	
pH 8	-OH	530.42	1.66	11907.13	10.8	
	Zr 3d5/2	182.41	1.41	11460.15	59.7	
	Zr 3d3/2	184.79	1.41	7734.13	40.3	

Table S4 Fitting parameters for O 1s, N 1s and Zr 3d spectra of TETA@HZO-PVAbefore and after phosphate adsorption at different pH conditions.

Sample	pH (g)	m	Q (mL/min)	<i>C</i> _o (mg/L)	q _{total} (mg P)	$q_e \pmod{(\mathrm{mg P/g})}$	Thomas model		
		(g)					k_{Th} (mL/(min·mg))	q_o) (mg P/g)	<i>R</i> ²
Synthetic solution	5.8	3	5	3.08	83.67	27.89	0.185	28.13	0.984
Real wastewater	7.7	3	5	3.08	60.93	20.13	0.189	20.15	0.961

Table S5. Column tests conditions and results.

Fig. S1 Photographs of the freeze-dried HZO-PVA and TETA@HZO-PVA composite beads.

Fig. S2 XRD patterns of HZO-PVA and TETA@HZO-PVA.

Fig. S3 TGA curves of neat PVA, HZO-PVA and TETA@HZO-PVA.

Fig. S4 Distribution of phosphate species as a function of pH.

Fig. S5 The pH at point of zero charge (pH_{pzc}) for HZO-PVA and TETA@HZO-PVA.

Fig. S6 Phosphate adsorption kinetics onto HZO-PVA and TETA@HZO-PVA with Elovich model fitting.

Fig. S7 XPS analysis of HZO-PVA before and after phosphate adsorption: (a) widescan spectrum; (b) O1s before adsorption; (c) Zr 3d before adsorption; (d) P 2p; (e) O 1s after adsorption; (f) Zr 3d after adsorption.

Fig. S8 P 2p XPS spectra of TETA@HZO-PVA after phosphate adsorption at pH 2 and

8.

Fig. S9. Plots of linear regressions on Thomas model.

References

- Z. Chen, H. Luo and H. Rong, Development of polyaminated chitosan-zirconium(IV) complex bead adsorbent for highly efficient removal and recovery of phosphorus in aqueous solutions, *Int. J. Biol. Macromol.*, 2020, **164**, 1183-1193.
- 2 H. Luo, X. Zeng, P. Liao, H. Rong, T. C. Zhang, Z. Jason Zhang and X. Meng, Phosphorus removal and recovery from water with macroporous bead adsorbent constituted of alginate-Zr⁴⁺ and PNIPAM-interpenetrated networks, *Int. J. Biol. Macromol.*, 2019, **126**, 1133-1144.
- 3 X. Zhao, Y. Zhang, S. Pan, X. Zhang, W. Zhang and B. Pan, Utilization of gel-type polystyrene host for immobilization of nano-sized hydrated zirconium oxides: A new strategy for enhanced phosphate removal, *Chemosphere*, 2020, **263**, 127938.
- 4 K. W. Jung, T. U. Jeong, J. W. Choi, K. H. Ahn and S. H. Lee, Adsorption of phosphate from aqueous solution using electrochemically modified biochar calcium-alginate beads: Batch and fixed-bed column performance, *Bioresour. Technol.*, 2017, 244, 23-32.
- 5 B. Wang, X. Hu, D. Zhou, H. Zhang, R. Chen, W. Guo, H. Wang, W. Zhang, Z. Hong and W. Lyu, Highly selective and sustainable clean-up of phosphate from aqueous phase by eco-friendly lanthanum cross-linked polyvinyl alcohol/alginate/palygorskite composite hydrogel beads, *J. Clean. Prod.*, 2021, **298**, 105919.