Supporting Information

Development of cost-effective and long-lasting integrated technology for H₂S control from sludge in wastewater treatment plants

Tianwei Hao^a, Jiajia Zeng^b, Jianyu Pan^b, Wenzhuo Huang^b, Zhe Kong^c, Jianliang Sun^{b,*}

a. Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China

b. Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China

c. School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China

*Corresponding author:

Dr. Jianliang Sun. Tel: (86)13533626596; e-mail: sunj1986@hotmail.com

Table of supporting information

Fig. S1. The schematic representation of the batch reactor setup for studying the H_2S control in the liquid sludge by chemical dosing.

Fig. S2. The schematic representation of the batch reactor setup for studying the H_2S control in the liquid sludge by aeration.

Table S1. The properties of the liquid sludge samples collected from a conventional

 municipal WWTP in Hong Kong.

Table S2. The prices and purities of the chemicals used in the cost estimations.

Table S3. The optimal parameters for the integrated approaches to achieve the desired H₂S control performance.

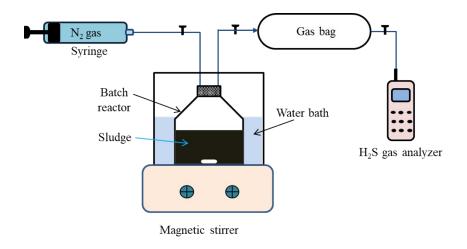


Fig. S1. The schematic representation of the batch reactor setup for studying the H_2S control in the liquid sludge by chemical dosing.

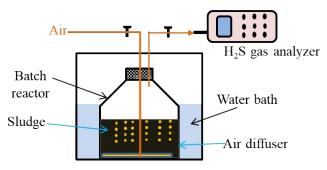


Fig. S2. The schematic representation of the batch reactor setup for studying the $\mathrm{H_2S}$

control in the liquid sludge by aeration.

Table S1. The properties of the liquid sludge samples collected from a conventionalmunicipal WWTP in Hong Kong.

Parameter	Value
Total suspended solids (g L ⁻¹)	20.2–39.80
Volatile suspended solids (g L ⁻¹)	17.20–34.20
pH	5.30-6.30
Oxidation-reduction potential (mV)	-173.6294.00
Dissolved hydrogen sulfide (mg S per L)	21.50-74.30
Sulfate (mg S per L)	112.97–293.40

Table S2. The prices and purities of the chemicals used in the cost estimations.

Chemical	Commercial products	Price (USD per tonne) ^a
NaClO ₂	85 wt% NaClO ₂ solid	2500
H_2O_2	33% H ₂ O ₂ solution	350
Iron oxide	98 wt% Fe ₂ O ₃ solid	580
Glutaraldehyde	50 wt% glutaraldehyde solution	2000

^a Prices were based on Alibaba International Prices in 2022

(https://www.alibaba.com).

Table S3. The optimal parameters for the integrated approaches to achieve the desired H₂S control performance.

Approach	Optimal parameters
H ₂ O ₂ -glutaraldehyde	$400 \text{ mg } \text{L}^{-1} \text{ H}_2\text{O}_2 + 1 \text{ mM glutaraldehyde}$
NaClO ₂ -	$400 \text{ mg } \text{L}^{-1} \text{ NaClO}_2 + 1 \text{ mM glutaraldehyde}$
glutaraldehyde	
Aeration-H ₂ O ₂	30 min at a flowrate of 17.8 m ³ air per h m ⁻³ sludge + 250
	mg L^{-1} H ₂ O ₂
Aeration-NaClO ₂	30 min at a flow rate of 17.8 $\rm m^3$ air per h $\rm m^{-3}$ sludge + 400
	mg L^{-1} H ₂ O ₂
H ₂ O ₂ -Fe ₂ O ₃	400 mg L ⁻¹ H ₂ O ₂ + 20000 mg L ⁻¹ Fe ₂ O ₃
NaClO ₂ -Fe ₂ O ₃	400 mg L ⁻¹ NaClO ₂ + 20000 mg L ⁻¹ Fe ₂ O ₃
H_2O_2	500 mg L ^{-1 b}
NaClO ₂	800 mg L ^{-1 b}

b The optimal dosages of H_2O_2 and $NaClO_2$ were based on the results of Yin et al. [1].

References

1 R. Yin, J. Peng, J. Sun, C. Li, D. Xia, C. Shang, Simultaneous removal of hydrogen sulfide, phosphate and emerging organic contaminants, and improvement of sludge dewaterability by oxidant dosing in sulfide-iron-laden sludge, Water Research, 2021, 203, 117557.