The Analysis of Per- and Polyfluoroalkyl Substances in Wastewater Sludges and Biosolids: Which Adsorbents Should be Used for the Cleanup of Extracts?

(Supporting Information)

Table S1. LC/MS/MS operating condition and other information.

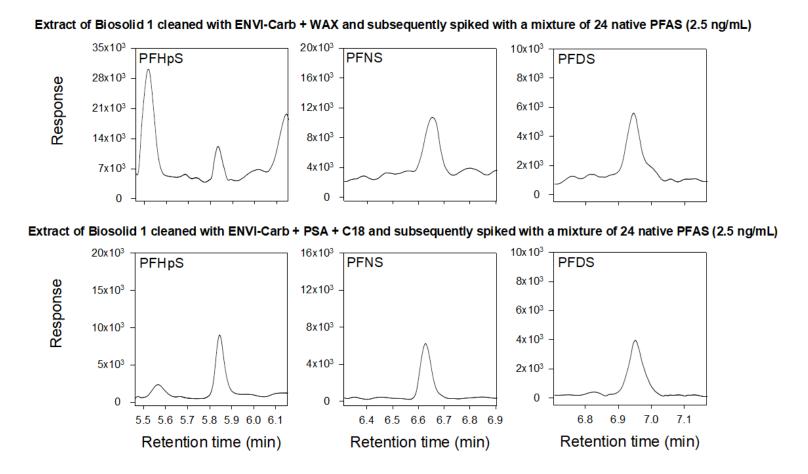
Instrument Shimadzu LCMS-8030 Triple Quadrupole Mass Spectrometer Ionization Negative electrospray Precolumn Guard Column Thermo Scientific™ Acclaim 120 Å C18, 4.6 x 10 mm, 5 μm Column oven oven temperature 30°C Injection volume 30 μL Mobile phases A: 10 mM ammonium acetate in LCMS grade water B: 10 mM ammonium acetate in LCMS grade Methanol Flow rate 0.5 mL/min Gradient profile Time (min) Eluent A Conc. (%) Eluent B Conc. (%) 4.5 20 80 10 20 80 10.5 60 40 10.5 60 40 10.5 60 40 10.5 60 40 10.5 60 40 10.5 60 40 10.5 60 40 10.5 60 40 10.5 60 40 10.5 60 40 10.5 60 40 10.5 60 40 </th <th></th> <th></th> <th></th> <th></th>					
Precolumn Guard Column Thermo Scientific™ Acclaim 120 Å C18, 4.6 x 10 mm, 5 μm Column oven oven temperature 30 °C Mobile phases A: 10 mM ammonium acetate in LCMS grade water B: 10 mM ammonium acetate in LCMS grade Methanol Flow rate 0.5 mL/min Gradient profile Time (min) Eluent A Conc. (%) Eluent B Conc. (%) Gradient profile 4.5 20 80 10.5 60 40 10.5 60 40 4.5 20 80 10.5 60 40 4.5 20 80 10.5 60 40	Instrument	Shimadzu LCMS-8030 Triple Quadrupole Mass Spectrometer			
Column oven oven temperature 30 °C Mobile phases A: 10 mM ammonium acetate in LCMS grade water B: 10 mM ammonium acetate in LCMS grade Methanol Flow rate 0.5 mL/min Time (min) Eluent A Conc. (%) Eluent B Conc. (%) Gradient profile 4.5 20 80 10.5 60 40 10.5 60 40 10.5 60 40 10.5 60 40 10.5 60 40 10.5 60 40	Ionization	Negative electrospray			
Column oven temperature 30°C temperature Injection volume 30 μL A: 10 mM ammonium acetate in LCMS grade water B: 10 mM ammonium acetate in LCMS grade Methanol Flow rate 0.5 mL/min Fluent A Conc. (%) Eluent B Conc. (%) Gradient profile 0.5 60 40 4.5 20 80 10 20 80 10.5 60 40	Precolumn	Guard Column Thermo	Scientific™ Acclaim 120 Å C1	18, 4.6 x 10 mm, 5 μm	
oven temperature Injection volume 30 μL Mobile phases A: 10 mM ammonium acetate in LCMS grade water B: 10 mM ammonium acetate in LCMS grade Methanol Flow rate 0.5 mL/min Time (min) Eluent A Conc. (%) Eluent B Conc. (%) Gradient profile 0.5 60 40 4.5 20 80 10 20 80 10.5 60 40	Column	Agilent Infinity Lab Por	oshell 120 Å EC-C18, 3.0 x 50	mm, 2.7 μm	
Mobile phases A: 10 mM ammonium acetate in LCMS grade water B: 10 mM ammonium acetate in LCMS grade Methanol Flow rate 0.5 mL/min Gradient profile 0 60 40 4.5 20 80 10 20 80 10.5 60 40 40 40 4.5 20 80 10 20 80 10.5 60 40	oven	30°C			
phases B: 10 mM ammonium acetate in LCMS grade Methanol Flow rate 0.5 mL/min Understand the profile Time (min) Eluent A Conc. (%) Eluent B Conc. (%) 0 60 40 0.5 60 40 4.5 20 80 10 20 80 10.5 60 40	-	30 μL			
Time (min) Eluent A Conc. (%) Eluent B Conc. (%) 0 60 40 0.5 60 40 4.5 20 80 10 20 80 10.5 60 40					
Gradient profile 0 60 40 4.5 60 40 10 20 80 10.5 60 40	Flow rate	0.5 mL/min			
Gradient profile 0.5 60 40 4.5 20 80 10 20 80 10.5 60 40		Time (min)	Eluent A Conc. (%)	Eluent B Conc. (%)	
Gradient profile 4.5 20 80 10 20 80 10.5 60 40		0	60	40	
profile 4.5 20 80 10 20 80 10.5 60 40		0.5	60	40	
10 20 80 10.5 60 40		4.5	20	80	
		10	20	80	
13.5 Stop		10.5	60	40	
	-	13.5	Stop		

	Analytes	Ion transitions	Internal standards	Ion transitions	Calibration range (µg/L)
	PFBA	213 > 169	[¹³ C ₄] MPFBA	217 > 172	1 - 20
Monitored	PFPeA	263 > 219	[¹³ C ₅] MPFPeA	268 > 223	1 - 20
ion	PFHxA	313 > 269	[¹³ C ₅] MPFHxA	318 > 273	0.05 - 20
transitions	PFHpA	463 > 319	[¹³ C ₄] MPFHpA	367 > 322	0.05 - 20
	PFOA	413 > 369	[¹³ C ₈] MPFOA	421 > 376	0.05 - 20
	PFNA	463 > 419	[¹³ C ₉] MPFNA	472 > 427	0.05 - 20
·	PFDA	513 > 469	[¹³ C ₆] MPFDA	519 > 474	0.05 - 20

	PFUdA	563 > 519	[¹³ C ₇] MPFUdA	570 > 525	0.05 - 20
	PFDoA	613 > 569	[¹³ C ₂] MPFDoA	615 > 570	0.05 - 20
	PFTrDA	663 > 619	[¹³ C ₂] MPFTeDA	715 > 670	0.05 - 20
	PFTeDA	713 > 669	[¹³ C ₂] MPFTeDA	715 > 670	0.05 - 20
	PFBS	299 > 80	[¹³ C ₃] MPFBS	302 > 99	0.05 - 20
	PFPeS	349 > 80	[¹³ C ₃] MPFBS	302 > 99	0.1 - 20
	PFHxS	399 > 80	$[^{13}C_3]$ MPHxS	402 > 99	0.05 - 20
	PFHpS	449 > 80	[¹³ C ₃] MPHxS	402 > 99	0.05 - 20
Monitored	PFOS	499 > 80	[¹³ C ₈] MPFOS	507 > 99	0.05 - 20
ion	PFNS	549 > 80	[¹³ C ₈] MPFOS	507 > 99	0.05 - 20
transitions	PFDS	599 > 80	[¹³ C ₈] MPFOS	507 > 99	0.05 - 20
	4:2FTS	327 > 307	$[^{13}C_2]$ M4:2FTS	329 > 81	0.05 - 20
	6:2FTS	427 > 407	$[^{13}C_2]$ M6:2FTS	429 > 81	0.05 - 20
	8:2FTS	527 > 507	$[^{13}C_2]$ M8:2FTS	529 > 81	0.05 - 20
	FOSA	498 > 78	[¹³ C ₈] MFOSA	506 > 78	0.05 - 20
	MeFOSAA	570 > 419	[² d ₂]MMeFOSAA	573 > 419	0.05 - 20
	EtFOSAA	584 > 419	[2d2] MEtFOSAA	589 > 419	0.05 - 20

Table S2. Limit of Quantitation (LOQ). Seven Ottawa sand samples (0.5 g/sample) were spiked with native PFAS (2 ng each) and isotopically labeled PFAS (1 ng each), and the spiked samples were extracted and analyzed. The standard deviation (SD) of the analyzed PFAS concentrations was calculated based on these 7 samples, and the limit of quantitation (LOQ) for each PFAS was calculated as $LOQ = 10 \times SD$. The values should be considered as the "best-case-scenario" LOQ. Since the background organics eluted in the extraction step could affect chromatogram quality, LOQ would vary among biosolid samples. The LOQ of 6:2 FTS is not reported due to cross contamination in some samples.

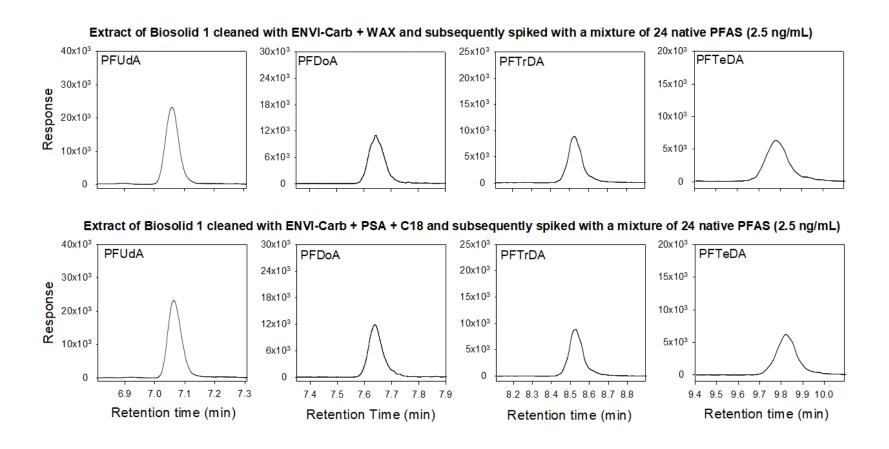
	LOQ (ng/g dry weight)
PFBA	0.5
PFPeA	1.5
PFHxA	0.1
PFHpA	0.1
PFOA	0.1
PFNA	0.1
PFDA	0.1
PFUdA	0.5
PFDoA	0.5
PFTrDA	1.0
PFTeDA	1.0
PFBS	0.5
PFPeS	0.5
PFHxS	0.1
PFHpS	0.1
PFOS	0.1
PFNS	0.5
PFDS	0.5
4:2 FTS	0.5
6:2 FTS	-
8:2 FTS	0.5
FOSA	0.5
MeFOSAA	1.0
EtFOSAA	1.0

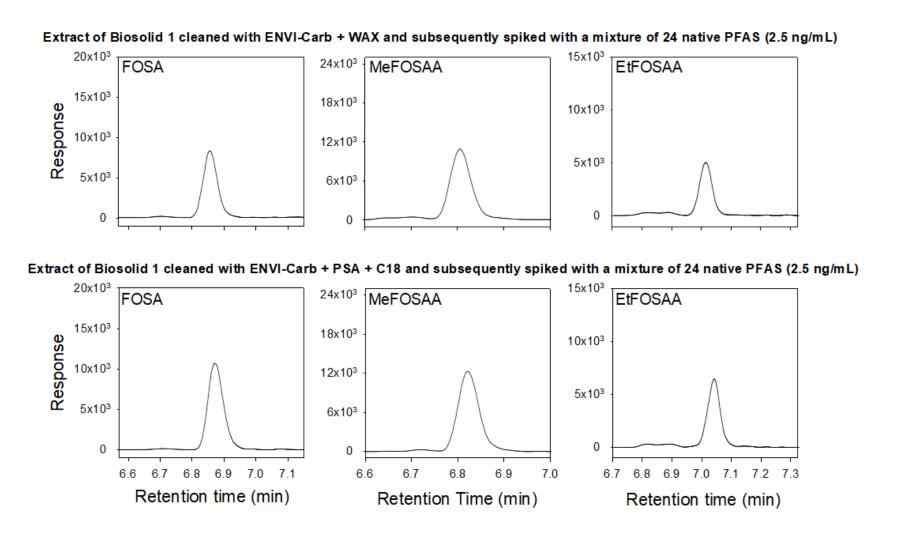

Table S3. Recovery values for native and isotopically labeled PFAS. Biosolid 1 and Biosolid 4 were spiked with both native PFAS (5 ng/compound) and isotopically labeled PFAS (2 ng/compound), and the spiked samples were extracted and analyzed.

Biosolid 1


Analytes	Recovery	Internal standards	Recovery	p
PFBA	95 ± 4	[¹³ C ₄] MPFBA	87 ± 4	0.07
PFPeA	95 ± 6	[¹³ C ₅] MPFPeA	92 ± 5	0.50
PFHxA	97 ± 7	[¹³ C ₅] MPFHxA	101 ± 4	0.29
PFHpA	108 ± 5	[¹³ C ₄] MPFHpA	112 ± 2	0.30
PFOA	102 ± 3	[¹³ C ₈] MPFOA	108 ± 3	0.10
PFNA	137 ± 6	[¹³ C ₉] MPFNA	130 ± 8	0.28
PFDA	160 ± 11	[¹³ C ₆] MPFDA	156 ± 10	0.62
PFUdA	109 ± 6	[¹³ C ₇] MPFUdA	117 ± 7	0.09
PFDoA	95 ± 4	[¹³ C ₂] MPFDoA	85 ± 5	0.08
PFTrDA	85 ± 5	[¹³ C ₂] MPFTeDA	74 ± 4	0.05
PFTeDA	80 ± 5	[¹³ C ₂] MPFTeDA	74 ± 4	0.14
PFBS	78 ± 5	[¹³ C ₃] MPFBS	84 ± 3	0.17
PFPeS	90 ± 4	[¹³ C ₃] MPFBS	84 ± 3	0.17
PFHxS	96 ± 6	[¹³ C ₃] MPHxS	91 ± 3	0.21
PFHpS	94 ± 4	[¹³ C ₃] MPHxS	91 ± 3	0.25
PFOS	93 ± 3	[¹³ C ₈] MPFOS	93 ± 2	1.00
PFNS	98 ± 5	[¹³ C ₈] MPFOS	93 ± 2	0.22
PFDS	100 ± 9	[¹³ C ₈] MPFOS	93 ± 2	0.38
4:2FTS	215 ± 12	[¹³ C ₂] M4:2FTS	190 ± 10	0.05
6:2FTS		[¹³ C ₂] M6:2FTS	410 ± 20	
8:2FTS	325 ± 13	[¹³ C ₂] M8:2FTS	298 ± 13	0.05
FOSA	100 ± 5	[¹³ C ₈] MFOSA	107 ± 4	0.11
MeFOSAA	137 ± 6	[² d ₂]MMeFOSAA	134 ± 3	0.58
EtFOSAA	138 ± 7	[² d ₂] MEtFOSAA	144 ± 3	0.14

Biosolid 4


Analytes	Recovery	Internal standards	Recovery	p
PFBA	86 ± 6	[¹³ C ₄] MPFBA	81 ± 5	0.28
PFPeA	89 ± 4	[¹³ C ₅] MPFPeA	93 ± 2	0.25
PFHxA	109 ± 4	[¹³ C ₅] MPFHxA	111 ± 3	0.41
PFHpA	125 ± 5	[¹³ C ₄] MPFHpA	128 ± 3	0.49
PFOA	134 ± 4	[¹³ C ₈] MPFOA	133 ± 2	0.70
PFNA	156 ± 7	[¹³ C ₉] MPFNA	152 ± 3	0.37
PFDA	181 ± 6	[¹³ C ₆] MPFDA	175 ± 3	0.23
PFUdA	158 ± 7	[¹³ C ₇] MPFUdA	164 ± 5	0.25
PFDoA	141 ± 5	[¹³ C ₂] MPFDoA	142 ± 3	0.85
PFTrDA	66 ± 4	[¹³ C ₂] MPFTeDA	68 ± 6	0.60
PFTeDA	74 ± 3	[¹³ C ₂] MPFTeDA	68 ± 6	0.26
PFBS	116 ± 7	[¹³ C ₃] MPFBS	115 ± 4	0.78
PFPeS	111 ± 7	[¹³ C ₃] MPFBS	115 ± 4	0.43
PFHxS	109 ± 6	[¹³ C ₃] MPHxS	114 ± 5	0.27
PFHpS	119 ± 4	[¹³ C ₃] MPHxS	114 ± 5	0.29
PFOS	105 ± 5	[¹³ C ₈] MPFOS	110 ± 4	0.21
PFNS	101 ± 6	[¹³ C ₈] MPFOS	110 ± 4	0.10
PFDS	104 ± 5	[¹³ C ₈] MPFOS	110 ± 4	0.16
4:2FTS	232 ± 14	[¹³ C ₂] M4:2FTS	210 ± 10	0.06
6:2FTS		[¹³ C ₂] M6:2FTS	399 ± 10	
8:2FTS	369 ± 13	[¹³ C ₂] M8:2FTS	400 ± 20	0.05
FOSA	97 ± 3	[¹³ C ₈] MFOSA	100 ± 3	0.26
MeFOSAA	121 ± 5	[² d ₂]MMeFOSAA	129 ± 3	0.11
EtFOSAA	156 ± 6	[² d ₂] MEtFOSAA	170 ± 10	0.13


Figure S1-A. Chromatograms of perfluoro sulfonates in the Biosolid 1 extract cleaned with ENVI-Carb and WAX (top panels) and with a blend of ENVI-Carb, PSA, and C18 (bottom panels). These compounds were not present in Biosolid 1. Thus, the compounds were added to the cleaned-up extract prior to LC/MS/MS analysis.

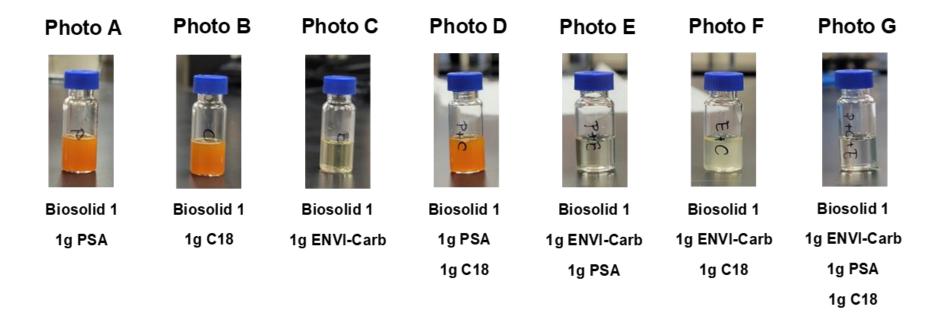
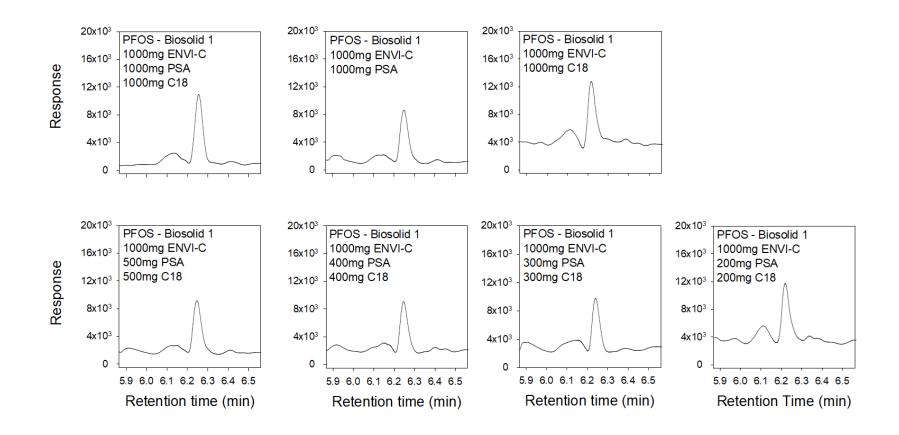
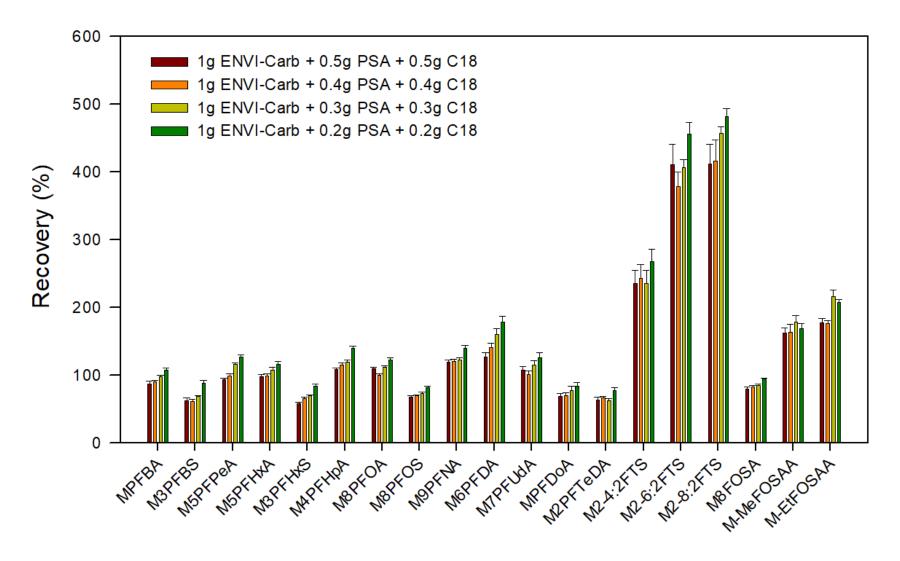
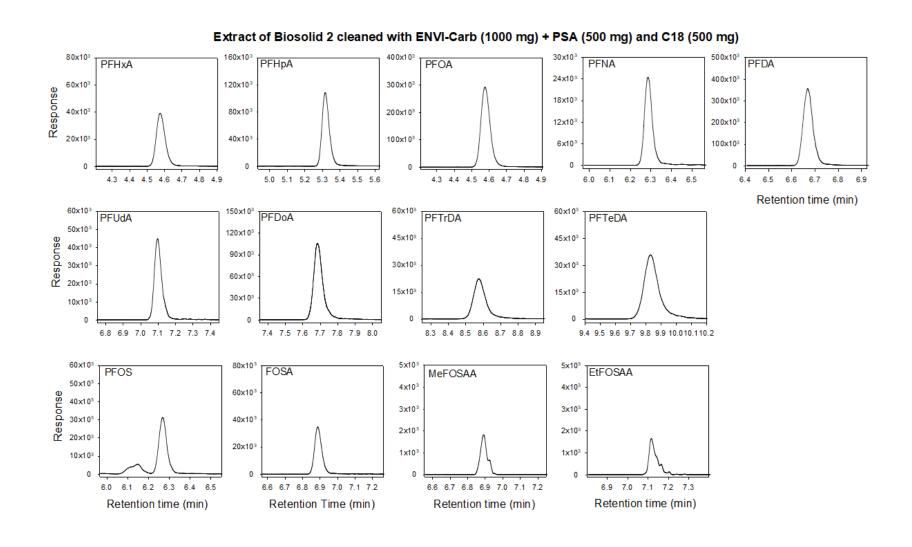
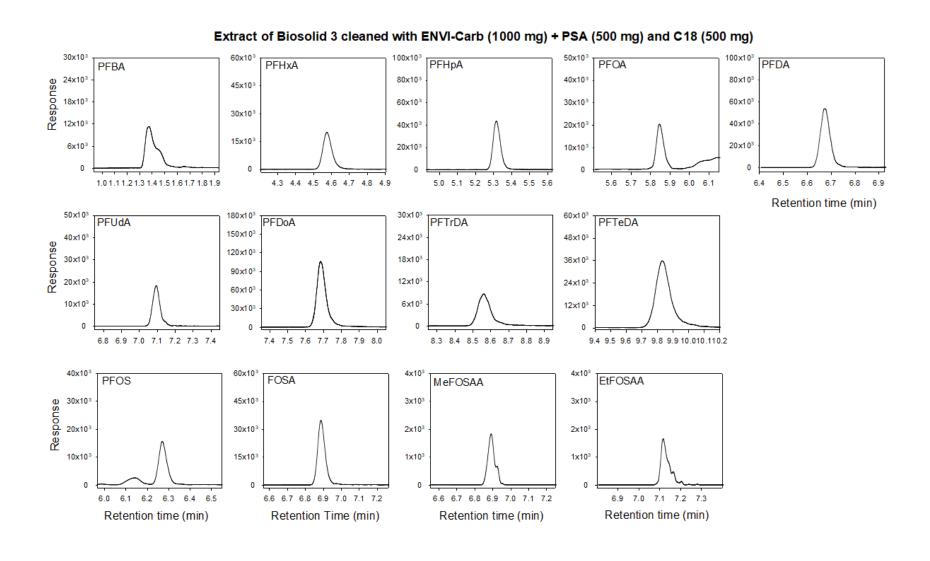

Figure S1-B. Chromatograms of other PFCAs in the Biosolid 1 extract cleaned with ENVI-Carb and WAX (top panels) and with a blend of ENVI-Carb, PSA, and C18 (bottom panels). The cleaned-up extracts were spiked prior to LC/MS/MS analysis.

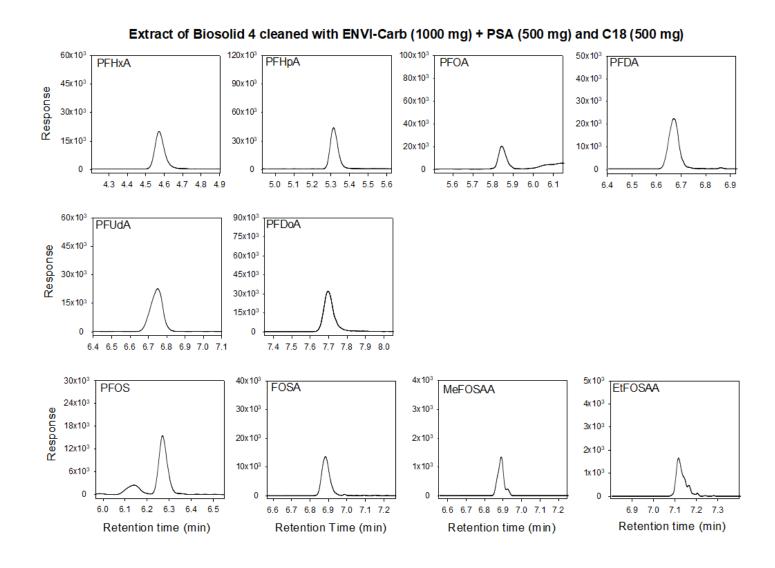
Figure S1-B cont'd. Chromatograms of other PFCAs in the Biosolid 1 extract cleaned with ENVI-Carb and WAX (top panels) and with a blend of ENVI-Carb, PSA, and C18 (bottom panels). The cleaned-up extracts were spiked prior to LC/MS/MS analysis.

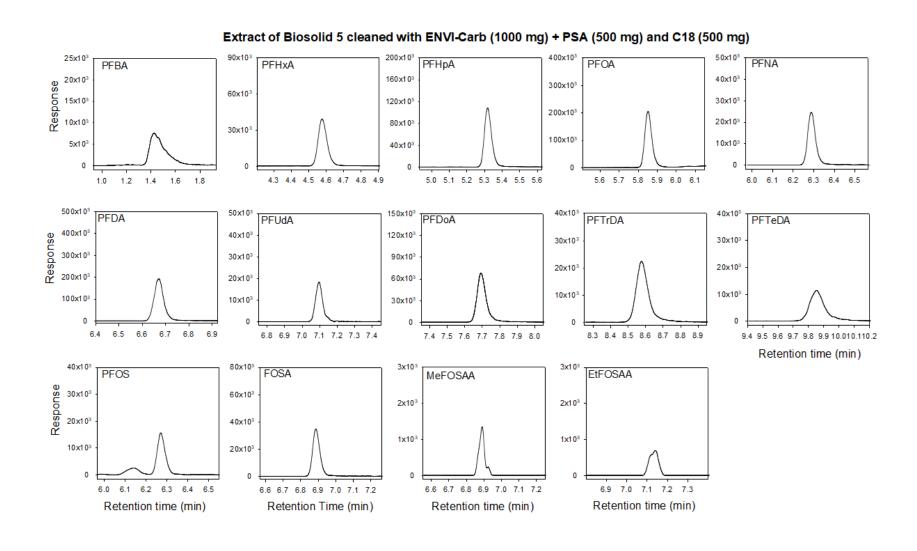
Figure S1-C. Chromatograms of precursors in the Biosolid 1 extract cleaned with ENVI-Carb and WAX (top panels) and with a blend of ENVI-Carb, PSA, and C18 (bottom panels). The cleaned-up extracts were spiked prior to LC/MS/MS analysis.

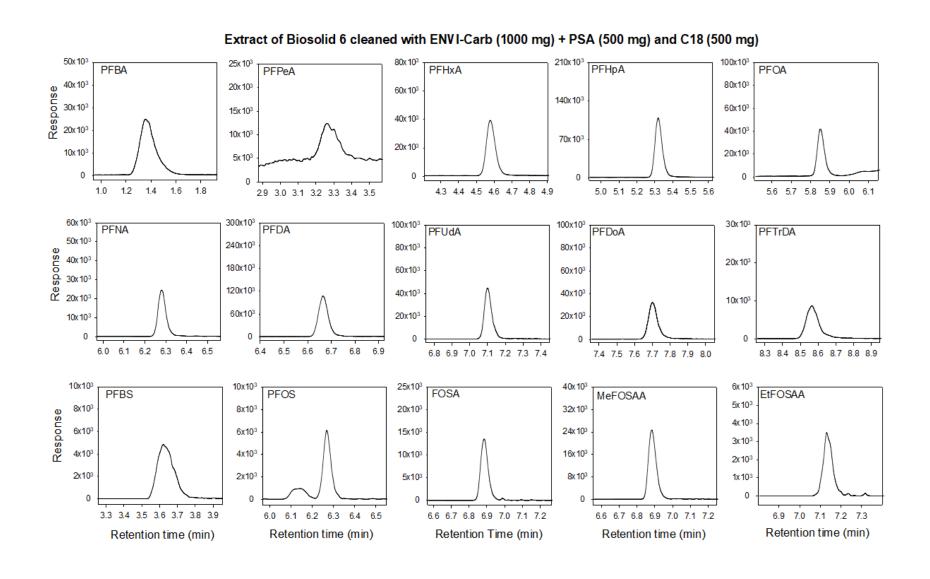
Figure S2. Photos A, B, C, D, E, F and G present the physical appearance of the Biosolid 1 extract cleaned with various adsorbents specified below each photo.


Figure S3. Chromatograms of PFOS in the Biosolid 1 extract cleaned with blends of ENVI-Carb, PSA, and C18.


Figure S4. Mean Recovery Values (n=3) of mass-labelled PFAS of Biosolid 1 cleaned with 1g ENVI-Carb and various amounts of PSA and C18.


Figure S5-A. Chromatograms of all PFASs in the Biosolid 2 extract cleaned with ENVI-Carb (1000 mg), PSA (500 mg) and C18 (500 mg)


Figure S5-B. Chromatograms of all PFASs in the Biosolid 3 extract cleaned with ENVI-Carb (1000 mg), PSA (500 mg) and C18 (500 mg)

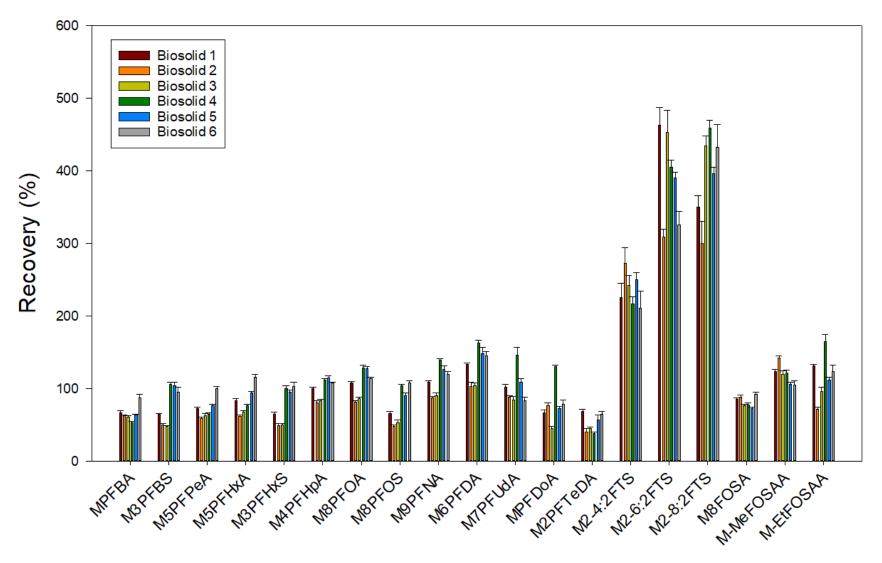

Figure S5-C. Chromatograms of all PFASs in the Biosolid 4 extract cleaned with ENVI-Carb (1000 mg), PSA (500 mg) and C18 (500 mg)

Figure S5-D. Chromatograms of all PFASs in the Biosolid 5 extract cleaned with ENVI-Carb (1000 mg), PSA (500 mg) and C18 (500 mg)

Figure S5-E. Chromatograms of all PFASs in the Biosolid 6 extract cleaned with ENVI-Carb (1000 mg), PSA (500 mg) and C18 (500 mg)

Figure S6. Mean Recovery Values (n=3) of mass-labelled PFAS of Biosolid 1, 2, 3, 4 and 5 cleaned with 1g ENVI-Carb + 0.5g PSA + 0.5g C18.