Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information

Development of high-performance novel CdSnS₂ atom cluster for adsorption of Royal

Bengal and AOP-assisted degradation of Methylene Blue

Soumya Ranjan Mishra, Vishal Gadore, Md. Ahmaruzzaman*

Department of Chemistry, National Institute of Technology, Silchar, Assam, India

Figure S1: Schematic illustration of the fabrication of $CdSnS_2$ atom clusters

Figure S2: a) Nitrogen desorption/adsorption isotherm b) Effect of pH on the adsorption of

0.35 6.75 (b) 0.30 -(a) 6.50 0.25 Ce/Qe (g/L) Ln (Qe) 6.25 0.20 0.15 6.00 0.10 5.75 50 100 150 200 250 ò 4.5 3.5 4.0 5.0 5.5 Ce (mg/L) Ln (Ce) 0.0032 850 (d) 0.0030 - (C) 800 750 0.0028 700 0.0026 650 0.0024 600 0.0022 550 I/Ce ð 0.0020 500 450 0.0018 400 0.0016 350 0.0014 300 0.0012 250 4.0 5.5 3.5 4.5 5.0 0.005 0.010 0.015 0.030 0.000 0.020 0.025 Ln (Ce) 1/Qe

RB.

Figure S4: Plots showing a) pseudo-first-order, b) pseudo-second-order, c) Elovich kinetics

models

Figure S5: a) Vant Hoff's plot for the removal of RB b) Role of temperature on the removal

of RB

Figure S6: a) Effect of nanocomposite dose and b) Adsorption percentage of $CdSnS_2$ atom clusters on the removal of RB.

Figure S7: a) The photodegradation performance of MB and b) Kinetics at varying H₂O₂

dosage

Figure S8: a) The photodegradation performance of MB and b) Kinetics at varying pH

Figure S9: a) The photodegradation performance of MB and b) Kinetics at varying catalyst

dosage

Figure S10: Reusability studies of $CdSnS_2$ atom clusters for a) adsorption of RB and c) degradation of MB; EDAX analysis after b) 5 cycles adsorption of RB and d) 8 cycles

degradation of MB

S11: Concentration of Cadmium and Stannum in wastewater after a) adsorption of RB b) degradation of MB

Kinetic model	Linear equation	Correlation coefficient (R ²)
Pseudo-first-order	$\ln(Q_e - Q_t) = \ln Q_e - k_1 t$	0.9968
Pseudo-second-order	$\frac{t}{Q_t} = \frac{1}{k_2 Q_e^2} + \frac{1}{Q_e} t$	0.999
Elovich	$Q_t = \frac{1}{\alpha} \ln(\alpha\beta) + \frac{1}{\alpha} \ln t$	0.9793

Table S1: Comparison of various kinetic models

Table 52. The degradation performance of wild at varying 11/07 dosage

Peroxide dosage/50 ml	Degradation percentage (%)	Rate constant (min ⁻¹)	R ²
0 ml	35.04 ± 1.42	0.0091	0.983
0.1 ml	83.35 ± 1.54	0.03625	0.9992
0.2 ml	87.31 ± 1.47	0.04058	0.9998
0.3 ml	86.8 ± 2.02	0.03926	0.9995
0.4 ml	86.32 ± 1.43	0.038	0.9992
0.5 ml	85.79 ± 1.57	0.03682	0.9987

pH	Degradation percentage (%)	Rate constant (min ⁻¹)	R ²
3	83.95 ± 1.49	0.03671	0.9994
5	84.41 ± 1.28	0.03727	0.9993
7	87.31 ± 1.47	0.04058	0.9998
9	90.05 ± 1.73	0.04579	0.9958
11	91.27 ± 1.33	0.04979	0.9912

Table S3: The degradation performance of MB at varying pH

Table S4: The degradation performance of MB at varying catalyst dosage

Catalyst dose	Degradation percentage (%)	Rate constant (min ⁻¹)	R ²
4 mg	87.07 ± 1.68	0.04185	0.9959
6 mg	91.27 ± 1.33	0.04979	0.9912
8 mg	94.43 ± 1.72	0.05643	0.9971
10 mg	92.26 ± 2.02	0.05038	0.9921
12 mg	91.05 ± 1.46	0.04719	0.9932