Enhancing energy recovery of wastewater

treatment plants through hydrothermal

liquefaction

List of contents

Figure S1. Diagram of the HTL products separation.

Figure S2. Thermogravimetric (TG) and Derivative Thermogravimetric (DTG) curves for the sewage sludge and digestate biocrudes.

Table S1. □Elemental analysis and ash content of biocrude, solids in aqueous product, and hydrochar generated from sewage sludge and digestate.

Table S2. Major compounds identified in the biocrudes generated from the HTL of sewage sludge and digestate.

Table S3. Major compounds identified in the AP generated from the HTL of sewage sludge and digestate.

Table S4. Solids reduction and ash concentration in the HTL of SS and digestate

Table S5. Previous studies on the HTL of sewage sludge and digestate

Table S6. Parameters used in the Monte Carlo simulations

Table S7. Main results of the Monte Carlo Simulations (N = 100,000)

Figure S1. Diagram of the HTL products separation.

Figure S2. Thermogravimetric (TG) and Derivative Thermogravimetric (DTG) curves for sewage sludge and digestate biocrudes. T_i = ignition temperature; T_b = burnout temperature.

	С	Н	Ν	Ash	0	HHV
SS	35.4±0.8	6.3±0.2	6.3±0.1	26.1±1.8	25.9±1.1	16.4±0.7
Biocrude	75.1±0.3	9.9±0.1	3.1±0.1	$0.04{\pm}0.0$	11.8±0.3	37.5±0.3
Aqueous	10.1±0.1	5.8±0.2	15.9±0.4	46.4±4.7	21.8±0.6	7.8±0.4
Hydrochar	26.7±0.5	1.7±0.1	1.2±0.0	70.6±4.5	0.1±0.2	11.4±0.3
Digestate	30.3±0.7	5.4±0.0	4.8±0.1	35.8±0.6	23.7±0.7	13.7±0.3
Biocrude	77.6±0.1	10.6±0.0	2.5±0.1	3.1±0.0	6.1±0.0	40.3±0.0
Aqueous product (db)	14.1±0.2	5.4±0.1	12.3±0.2	36.3±3.9	31.8±0.1	6.8±0.1
Hydrochar	11.2±1.2	$0.9{\pm}0.0$	0.5 ± 0.1	77.7±2.6	8.1±1.2	3.6±0.6

Table S1. Elemental analysis and ash content of biocrude, solids in aqueous product, and hydrochar generated from SS and digestate. Values are in wt% of dry product and represent the mean of three separate experiments \pm standard deviation.

			Sewage sludge	Digestate
Peak	□RT, min	Compound	(Area, %)	(Area, %)
1	6,453	Butanoic acid, 3-methyl	4.85	
2	6,703	Butanoic acid, 2-methyl	2.54	
3	9,533	Pentanoic acid, 4-methyl	2.00	
4	10,464	Phenol	6.74	1.64
5	12,198	2(3H)-Furanone, 5-butyldihydro-4-methyl	1.96	
6	13,527	p-cresol	8.20	2.69
7	14,332	Undecane	1.37	
8	14,742	Phenylethyl Alcohol	2.15	
9	16,433	Phenol, 4-ethyl	4.68	3.03
10	19,543	N-2-Hydroxyethyl-succinimide	2.01	
11	27,596	Dodecanoic acid	1.21	1.64
12	13,91	2,5-Pyrrolidinedione, 1-methyl	2.06	
13	21,495	Hydrocinnamic acid	1.40	
14	30,859	1-Hexadecanol		1.47
15	31,66	Benzene, (1-pentylheptyl)		1.34
16	31,765	Benzene, (1-butyloctyl)		1.10
17	32,067	Benzene, (1-propylnonyl)		1.37
18	33,89	Benzene, (1-pentyloctyl)		1.98
19	34,695	2-Nonadecanone	1.01	1.21
20	35,487	Hexadecanenitrile	1.50	
21	35,988	Hexadecanoic acid, methyl ester	1.02	
22	35,113	Heptadecanol-1	3.03	
23	41,073	9-Octadecenamide		2.16
24	46,685	Eicosane	1.61	6.07
25	39,658	1-Eicosanol	1.64	1.36
26	41,051	Tetradecanamide	6.35	
27	44,776	Octadecanamide	2.51	
28	45,001	Octacosane	1.77	
29	48,295	Nonacosane	2.16	
30	49,858	Tetratetracontane		1.54
31	50,476	Cholest-14-ene	1.97	4.29
32	52,15	Cholest-4-ene	15.2	16.07
33	52,344	Cholesta-3,5-diene		1.24
34	54,219	Androstan-17-one, 3-hydroxy	1.88	
35	54,565	13,15-Octacosadiyne	1.99	
36	54,896	Androst-2-en-17betaol, 17-methyl	3.81	11.11

Table S2. Major compounds identified* in the biocrudes generated from the HTL of sewage sludge and digestate.

Total			99.12	98.8
		Other compounds	8.12	16.00
40	57,534	Cholest-4-en-3-one		1.55
39	56,474	Cholestan-3-one		4.36
38	55,869	Cholestane, 2,3-epoxy-	2.38	13.12
37	55,406	Cholestan-3-ol		2.46

* Representing >1% of the GC–MS total ion chromatogram areas. Compounds with match factor scores, between observed and reference mass spectrum, greater than or equal to 75% were assigned as identified compounds.

Peak	□RT, min	Compound	Sewage sludge (Relative area, %)	Digestate (Relative area, %)
1	6,453	2-Methylpyridine	0,1	
2	6,703	2,6-Dimethylpyridine	0,13	
3	9,533	2-Propanone, 1-hydroxy-	0,09	
4	10,464	Pyridine, 2,4,6-trimethyl-		0,93
5	12,198	Pyridine, 2,4-dimethyl-		0,11
6	13,527	Acetic acid	90,5	17,95
7	14,332	Pyridine, 3-ethyl-2,6-dimethyl-	0,16	
8	14,742	Propanoic acid	0,93	1,07
9	16,433	2-Furancarboxaldehyde, 5-methyl-		0,3
10	19,543	Butanoic acid	0,43	1,15
11	27,596	Butanoic acid, 4-hydroxy-		0,86
12	13,91	Pentanoic acid		0,5
13	21,495	1-Methyl-2-pyrrolidinone		1,73
14	30,859	1-Ethyl-2-pyrrolidinone		0,57
15	31,66	Oxime-, methoxy-phenyl-		14,62
16	31,765	1H-Imidazole, 1-methyl-2-nitro-		0,51
17	32,067	Piperidine, 1-methyl-		0,28
18	33,89	Cinnamonitrile	0,11	
19	34,695	Ethanol, 2,2'-oxybis-		1,69
20	35,487	5-Methyl-2-pyrrolidinone		0,4
21	35,988	2-Pyrrolidinone	0,78	
22	35,113	2-Piperidinone	0,14	8,24
23	41,073	3-Aminopyridine		1,36
24	46,685	Caprolactam		1,29
25	39,658	3,4-dimethyl-1H-pyrrole-2-carboxaldehyde		1,57
26	41,051	2-Ethyl-6-methylpyridin-3-ol		0,89
27	44,776	Phenol, 4-amino-		1,88

Table S3. Major compounds identified* in the APs generated from the HTL of sewage sludge and digestate.

Total			95.44	74.96
39	56,474	2-(4-Hydroxyphenyl)ethanol	0,3	
38	55,869	N-(2-Phenylethyl)acetamide		1,34
37	55,406	4-Amino-2,3-dimethylbenzaldehyde		0,22
36	54,896	2(1H)-Pyridinone, 3-methyl-		0,45
35	54,565	Succinimide	0,44	
34	54,219	3-Pyridinol	0,47	8,06
33	52,344	3-Pyridinol, 6-methyl-	0,57	
32	52,15	Phenol, o-amino-		5,06
31	50,476	Phthalic acid, ethyl 2-ethylbutyl ester		0,48
30	49,858	Glutarimide		0,54
29	48,295	2-Ethyl-3-Hydroxypyridine		0,91
28	45,001	2(1H)-Pyridinone, 1,3-dimethyl-	0,29	

* Compounds with match factor scores, between observed and reference mass spectrum, greater than or equal to 75% were assigned as identified compounds.

	Sewage	Anaerobic
Measurement	sludge	digestate
Solids in initial sludge feed (g)	2.76±0.004	2.72±0.003
Ash in sludge feed (g)	0.72 ± 0.05	0.98 ± 0.01
Hydrochar (HTL solids) (g)	0.93 ± 0.10	1.19 ± 0.04
Ash in hydrochar (g)	0.66 ± 0.07	0.92 ± 0.03
Recovery of ash in hydrochar (%)	92%	94%
Reduction of initial sludge solids (%)	66%	56%

Table S4. Solids reduction from the HTL of sewage sludge and digestate

	Sludge characteristics						HTL operating parameters Biocrude characteristics				s								
							Ash				VS	Yield						Ash	
Author	Sludge	С	Н	N	S	0	(%, db)	HHV ^a	Process ^b	T and time	(%, db)	(%, daf)	С	Н	N	S	0	(%, db)	HHV ^a
1	SS	47.4	9.3	8.2		35.1	25.8	23.0	Batch	350C 60'	11.5	25.8							
2	PS	46.5	6.1	3.3	0.4	31.2	12.5	18.9	Continuous	350C	3.5	24.5	58.2	6.5	2.4	0.5	5.9	28.4	27.9
3	PS	45.3	7.3	2.5	0.3	33.7	13.0	19.7	Continuous	350C	13.9	31.8	72.8	8.9	3.1		12.7	2.0	35.0
	PS	47.8	6.5	3.6	0.5	33.6	7.5	19.4	Continuous	350C 18'	11.0	37.3	76.5	10.1	4.3	0.6	8.1	0.4	38.8
4	WAS	43.6	6.5	7.9	0.7	29.0	16.2	18.9	Continuous	350C 19'	8.1	24.8	72.5	8.7	5.1	0.9	6.5	6.3	35.8
	AD	38.7	5.7	4.5	1.6	27.9	28.1	16.2	Continuous	350C 30'	11.5	34.4	78.5	9.5	4.5	1.2	6.2	0.2	39.0
5	SS	43.4	6.5	5.0	0.8	27.6	16.7	19.0	Batch	325C 30'	8.3	37.0							39.0
6	SS	52.0	7.6	7.5	2.6	30.3	36.7	15.3	Batch	300C 40'	10.5	40.0	66.0	8.5	6.3	1.3	17.9		31.2
7	SS	43.4	5.9	3.2		47.5	39.2	14.6	Batch	350C 20'	4.4	39.5	72.5	9.4	7.0		11.1		36.0
8	WAS	46.4	7.6	7.4		38.6	23.2	19.7	Batch	350C 15'	16.4	44.5	73.0	10.5	5.2		11.3		37.7
9	SS	46.5	7.0	2.1	0.8	33.3	10.3	19.8	Batch	400C 60'	13.5	26.8	72.5	9.4	7.0		11.1		36.1
10	PS+ WAS	42.6	7.0	6.8	1.9	19.8	21.8	21.1	Batch	300C 120	10.2	36.9	75.8	10.0	4.5	2.4	7.3		38.8
11	WAS	33.8	5.1	5.8	3.2	16.5	35.5	15.8	Batch	350C 10'	6.5	20.0	73.1	9.2	4.4	1.7	11.6		35.8
12	WAS	50.9	7.4	6.9		34.8	40.6	21.5	Batch	350C 30'	16.0	40.2	73.7	10.1	5.7		10.5		37.4
13	AD						31.0		Batch	300C 30'	13.8	9.4	66.6	9.2	4.3	1.0	18.9		32.3
This study	WAS	35.4	6.3	6.3		25.9	26.1	16.4	Batch	350C 30'	2.0	26.4	75.1	9.9	3.1		11.8	0.0	37.5
	AD	30.3	5.4	4.8		23.7	35.8	13.7	Batch	350C 30'	1.7	15.8	77.6	10.6	2.5		6.1	3.1	40.3

Table S5. Previous studies on the HTL of sewage sludge and digestate

SS: sewage sludge (the source is not known); PS: primary sludge; WAS: waste activated sludge; PS: primary sludge; AD: anaerobic digestate; HHV: higher heating value; T: temperature; COD: chemical oxygen demand.

^a Recalculated with Eq. (5)

^b Values presented in this table correspond to HTL processes without addition of catalyst. For continuous mode, the HTL products were gravimetrically separated. For batch mode, the HTL products were separated using solvents.

Parameter	Name	HTL-AD	AD-HTL-AD			
COD of SS (kg)	COD_SS	130	130			
VS of SS (kg)	VS_SS	100	100			
HHV of SS (MJ/kg) ^a	HHV_SS	~ Tri (14, 17, 23)	~ Tri (14, 17, 23)			
Biodegradability of SS (fraction) ^b	f_SS	-	~ Tri (0.3, 0.5, 0.7)			
Produced methane from AD of SS (L)	CH4 SS	-	COD SS * f SS * 350			
Recovered energy from AD of SS (fraction)	ER AD SS	-	(CH4_SS * 39.74/1000)/ (HHV_SS * VS_SS)			
COD of digestate (kg)	COD_D	-	COD_SS * (1 - f_SS)			
VS of digestate (kg)	VS_D	-	COD_D / 1.1			
HHV of biocrude (MJ/kg) ^a	HHV_oil	~ Tri (28, 37, 39)	~ Tri (32, 37, 40)			
Maximum yield of biocrude (fraction)	Max_Yield	0.9 * (HHV_SS)/ (HHV_OIL)	(0.9 - ER_AD_SS) * VS_SS* HHV_SS / (VS_D * HHV_OIL)			
		\sim Tri (a, c, b) a = 0.2	~ Tri (a, c, b) a = 0.09			
Biocrude Yield (fraction) ^a	Yield oil	$b = min (0.44, Max_Yield)$ c = min ((a+0.31+b)/3, (a+b)/2)	$b = min (0.34, Max_Yield)$ c = min ((a+0.16+b)/3, (a+b)/2)			
Recovered energy from biocrude (fraction)	ER oil	(Yield_oil) * (HHV_oil) / (HHV_SS)	Yield_oil * VS_D * HHV_oil / (HHV_SS * VS_SS)			
COD of biocrude (kg) °	 COD_oil	HHV_oil * Yield_oil / 13.9	HHV_oil * Yield_oil / 13.9			
COD of AP (kg) ^d	COD_AP	(COD_SS - COD_oil) * 0.5	(COD_D - COD_oil) * 0.5			
Biodegradability of AP (fraction) ^e	f_AP	~ Tri (0.4, 0.6, 0.8)	~ Tri (0.3, 0.5, 0.7)			
Produced methane from AD of AP (L)	CH4_AP	COD_AP * f_AP * 350	COD_AP * f_AP * 350			
Recovered energy from AD of AP (fraction)	ER AD AP	CH4_AP *(39.74/1000) / (HHV SS * VS SS)	CH4_AP *(39.74/1000) / (HHV SS * VS SS)			
Total recovered energy (%)	ER	(ER_oil + ER_AD_AP) * 100%	(ER_AD_SS + ER_oil + ER_AD_AP) * 100%			

Table S6. Parameters used for the Monte Carlo simulations

^a Values based on Table S4

^b Astals et al.¹⁴

^a^cCOD values are converted from a mass to energy basis assuming 13.9 MJ/kg COD as reported by Seiple et al.¹⁵ ^dFrom the residual COD, 50% is partitioned to the AP ^e Posmanik et al.¹⁶ and the present study

	AD	1	HTL-AD		AD-HTL-AD						
	ER from	ER from	ER from	Total	ER from	ER from	ER from	Total ER			
	AD of SS	biocrude	AP (%)	ER (%)	AD of SS	biocrude	AP (%)	(%)			
	(%)	(%)			(%)	(%)					
Mean	50.7	60.9	12.2	73.1	50.8	23.0	6.9	80.6			
SD	9.8	10.9	3.8	9.6	9.8	7.2	2.4	8.4			
Min	25.1	28.2	1.9	42.7	24.9	6.4	0.9	49.2			
2.5%	33.2	40.4	5.5	54.6	33.1	11.2	2.9	63.5			
97.5%	71.1	82.1	20.1	91.2	71.0	39.0	12.2	94.7			

Table S7. Main results of the Monte Carlo Simulations (N = 100,000)

References

- 1. Inoue, S., Sawayama, S., Dote, Y. & Ogi, T. Behaviour of nitrogen during liquefaction of dewatered sewage sludge. *Biomass and Bioenergy* **12**, 473–475 (1997).
- 2. Anastasakis, K., Biller, P., Madsen, R. B., Glasius, M. & Johannsen, I. Continuous Hydrothermal Liquefaction of Biomass in a Novel Pilot Plant with Heat Recovery and Hydraulic Oscillation. *Energies* **11**, 1–24 (2018).
- Silva Thomsen, L. B. *et al.* Hydrothermal liquefaction of sewage sludge; energy considerations and fate of micropollutants during pilot scale processing. *Water Res.* 183, 116101 (2020).
- 4. Marrone, P. A. *et al.* Bench-Scale Evaluation of Hydrothermal Processing Technology for Conversion of Wastewater Solids to Fuels. *Water Environ. Res.* **90**, 329–342 (2018).
- 5. Prestigiacomo, C. *et al.* Catalytic hydrothermal liquefaction of municipal sludge assisted by formic acid for the production of next-generation fuels. *Energy* **232**, 121086 (2021).
- 6. Malins, K. *et al.* Bio-oil from thermo-chemical hydro-liquefaction of wet sewage sludge. *Bioresour. Technol.* **187**, 23–29 (2015).
- Huang, H. jun *et al.* Comparative studies of thermochemical liquefaction characteristics of microalgae, lignocellulosic biomass and sewage sludge. *Energy* 56, 52–60 (2013).
- 8. Conti, F. *et al.* Valorization of animal and human wastes through hydrothermal liquefaction for biocrude production and simultaneous recovery of nutrients. *Energy Convers. Manag.* **216**, 112925 (2020).
- 9. Qian, L., Wang, S. & Savage, P. E. Hydrothermal liquefaction of sewage sludge under isothermal and fast conditions. *Bioresour. Technol.* **232**, 27–34 (2017).
- Zhang, W. & Liang, Y. Hydrothermal liquefaction of sewage sludge effect of four reagents on relevant parameters related to biocrude and PFAS. J. Environ. Chem. Eng. 10, 107092 (2022).
- 11. Xu, D. *et al.* Comprehensive evaluation on product characteristics of fast hydrothermal liquefaction of sewage sludge at different temperatures. *Energy* **159**, 686–695 (2018).
- 12. Shah, A. A., Toor, S. S., Conti, F., Nielsen, A. H. & Rosendahl, L. A. Hydrothermal liquefaction of high ash containing sewage sludge at sub and supercritical conditions. *Biomass and Bioenergy* **135**, (2020).
- 13. Vardon, D. R. *et al.* Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge. *Bioresour. Technol.* **102**, 8295–8303 (2011).
- 14. Astals, S. *et al.* Anaerobic digestion of seven different sewage sludges: A biodegradability and modelling study. *Water Res.* **47**, 6033–6043 (2013).
- 15. Seiple, T. E., Skaggs, R. L., Fillmore, L. & Coleman, A. M. Municipal wastewater sludge as a renewable, cost-effective feedstock for transportation biofuels using hydrothermal liquefaction. *J. Environ. Manage.* **270**, 110852 (2020).
- Posmanik, R. *et al.* Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks. *Bioresour. Technol.* 233, 134– 143 (2017).