Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2023

Supplementary Materials for

Degradation of sulpiride in water by UV/Cl process: Kinetics, reaction mechanism

and transformation pathways

Heng Zhang^{a, b, c}, Miao Chen^{a, b, c}, Changsheng Guo^{a, b, c}, Jingpu Fan^{a, b, c}, Jian Xu^{a, b, c, *}

^a State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China

^b State Environmental Protection Key Laboratory of Ecological Effect and Risk

Assessment of Chemicals, Chinese Research Academy of Environmental Sciences,

Beijing, 100012, China

^c Center for Environmental Health Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China

*: all correspondence should be addressed. Tel: 86-10-84916028; Fax: 86-10-84916028; E-mail: xujian@craes.org.cn

Number of pages: 18 Number of Equations: 29 Number of Tables: 6 Number of Figures: 7 Reactions involved in the reactive radicals in UV/chlorine process. (S1-S15)

$$ClO^{-} \xrightarrow{hv} O^{-} + Cl.$$
 (S1)

$$HClO \xrightarrow{hv} \cdot OH + Cl \cdot$$
 (S2)

$$OH \rightleftharpoons O^{-+} + H^{+}$$
 pK_a=11.9 (S3)

$$\cdot OH + HClO \rightarrow ClO \cdot + H_2O$$
 $2.0 \times 10^9 \text{ M}^{-1}\text{s}^{-1}$ (S4)

$$\cdot \text{OH} + \text{ClO}^{-} \rightarrow \text{ClO} + \text{OH}^{-} \qquad 8.8 \times 10^9 \text{ M}^{-1} \text{s}^{-1} \tag{S5}$$

$$\cdot$$
OH + Cl⁻ \rightleftharpoons ClOH⁻ k_{+} =4.3×10⁹ M⁻¹s⁻¹

$$k_{-}=6.1 \times 10^9 \text{ M}^{-1} \text{s}^{-1}$$
 (S6)

$$OH + OH^{-} \rightleftharpoons O^{-} + H_2O$$
 $k_{+}=1.3 \times 10^{10} \text{ M}^{-1}\text{s}^{-1}$

$$k=1.8 \times 10^6 M^{-1} s^{-1}$$
 (S7)

$$Cl^{+} + HClO \rightarrow ClO^{+} + H_2^{0}$$
 3.0×10⁹ M⁻¹s⁻¹ (S8)

$$Cl^{+} + ClO^{-} \rightarrow ClO^{+} + Cl^{-} \qquad 8.2 \times 10^{9} \text{ M}^{-1} \text{s}^{-1} \qquad (S9)$$

$$Cl + Cl^{-} \rightleftharpoons Cl_{2}^{-}$$
 $k_{eq} = 5.9 \times 10^{4} \text{ M}^{-1}$ (S10)

$$Cl^{+} + OH^{-} \rightarrow ClOH^{-}$$
 1.8×10¹⁰ M⁻¹s⁻¹ (S11)

$$CIOH^{-1} + H^{+} \rightleftharpoons CI^{-} + H_{2}O = k_{+} = 2.1 \times 10^{10} \text{ M}^{-1} \text{s}^{-1}$$

 $Cl_{2}^{-} + Cl_{2}^{-} \rightarrow Cl_{2} + 2Cl^{-}$ 9.0×10⁸ M⁻¹s⁻¹

 $\operatorname{Cl}_{2}^{-} + \operatorname{Cl}_{2} \rightarrow \operatorname{Cl}_{2} + \operatorname{Cl}_{2}^{-}$ $2.1 \times 10^{9} \,\mathrm{M}^{-1} \mathrm{s}^{-1}$

 $HCIO \leftrightarrows CIO^- + H^+$

 $\delta_{\text{HCIO}} = \frac{\left[\text{H}^{+}\right]}{\left[\text{H}^{+}\right] + k_{\text{a(HCIO)}}}$

 $\delta_{\text{CIO}^{-}} = \frac{k_{a(\text{HCIO})}}{[\text{H}^{+}] + k_{a(\text{HCIO})}}$

k=
$$1.3 \times 10^3 \text{ M}^{-1}\text{s}^{-1}$$
 (S12)

$$Cl_2^- + OH \rightarrow HClO + Cl^ 1.0 \times 10^9 \text{ M}^{-1}\text{s}^{-1}$$
 (S13)

$$1.0 \times 10^{5} \text{ M}^{-1} \text{S}^{-1}$$
 (S13)

$$1.0 \times 10^9 \,\mathrm{M}^{-1}\mathrm{s}^{-1}$$
 (S13)

$$1.0 \times 10^9 \,\mathrm{M}^{-1}\mathrm{s}^{-1}$$
 (S13)

$$+ \cdot OH \rightarrow HCIO + CI$$
 $1.0 \times 10^9 \text{ M}^{-1}\text{s}^{-1}$ (S13)

$$1.0 \times 10^9 \,\mathrm{M}^{-1}\mathrm{s}^{-1}$$
 (S13)

$$+ \cdot OH \rightarrow HCIO + CI^{-1}$$
 $1.0 \times 10^9 \text{ M}^{-1}\text{s}^{-1}$ (S13)

$$+ \cdot OH \rightarrow HCIO + CI \qquad 1.0 \times 10^9 \text{ M}^{-1} \text{s}^{-1}$$
 (S13)

$$H \to HClO + Cl^{-1}$$
 $1.0 \times 10^9 \,\mathrm{M}^{-1}\mathrm{s}^{-1}$ (S13)

$$^{\circ}OH \rightarrow HClO + Cl^{-1}$$
 1.0×10⁹ M⁻¹s⁻¹ (S13)

$$H \to HClO + Cl^{-1}$$
 1.0×10⁹ M⁻¹s⁻¹ (S13)

$$DH \to HClO + Cl^{-1}$$
 1.0×10⁹ M⁻¹s⁻¹ (S13)

$$^{\circ}\text{OH} \rightarrow \text{HClO} + \text{Cl}^{-} \qquad 1.0 \times 10^9 \text{ M}^{-1} \text{s}^{-1} \qquad (S13)$$

$$OH \to HClO + Cl^{-1}$$
 $1.0 \times 10^9 M^{-1} s^{-1}$ (S13)

$$HCIO + Cl^{-1}$$
 1.0×10⁹ M⁻¹s⁻¹ (S13)

$$O + Cl^2$$
 1.0.100 x 1.1 (G12)

 $k_{a(\text{HClO})}$

$$K_{-}=1.3 \times 10^{5} \text{ M}^{-1} \text{S}^{-1}$$
 (S12)

$$k_{-}=1.3\times10^{3} \text{ M}^{-1} \text{s}^{-1}$$
 (S12

$$k_{-}=1.3\times10^{3} M^{-1} s^{-1}$$
 (S12)

$$k = 1.3 \times 10^3 M^{-1} s^{-1}$$
 (S12)

$$_{+}=2.1\times10^{10} \mathrm{M}^{-1} \mathrm{s}^{-1}$$

$$2.1 \times 10^{10} \text{ M}^{-1} \text{s}^{-1}$$

$$_{+}=2.1\times10^{10}$$
 M ¹S ¹

(S14)

(S15)

(S16)

(S17)

(S18)

$$2.1 \times 10^{10} \text{ M}^{-1} \text{s}^{-1}$$

$$SLP^+ \rightleftharpoons SLP + H^+$$
 k_{a1} (S19)

$$SLP \rightleftharpoons SLP^- + H^+$$
 k_{a2} (S20)

SLP⁺:
$$\delta_{cat} = \frac{[H^+]^2}{[H^+]^2 + k_{a1(SLP)}[H^+] + k_{a1(SLP)}k_{a2(SLP)}}$$
(S21)

$$\delta_{\text{neu}} = \frac{k_{a1(SLP)}[\text{H}]}{[\text{H}^+]^2 + k_{a1(SLP)}[\text{H}^+] + k_{a1(SLP)}k_{a2(SLP)}}$$

$$k_{a1(SLP)}k_{a2(SLP)}$$
(S22)

$$SLP: \delta_{ani} = \overline{\left[H^{+}\right]^{2} + k_{a1(SLP)}\left[H^{+}\right] + k_{a1(SLP)}k_{a2(SLP)}}$$
(S23)

$$SLP^{+} + HClO \rightarrow products$$
 $k_{SLP^{+} + HClO}$ (S24)

$$SLP^{+} + ClO^{-} \rightarrow products$$
 $k_{SLP^{+} \cdot ClO^{-}}$ (S25)

$$SLP + HClO \rightarrow products$$
 $k_{SLP \cdot HClO}$ (S26)

$$SLP + ClO^{-} \rightarrow products$$
 k $SLP \cdot ClO^{-}$ (S27)

$$SLP^- + HClO \rightarrow products$$
 k $SLP^- \cdot HClO$ (S28)

$$SLP^{-} + ClO^{-} \rightarrow products$$
 k $SLP^{-} \cdot ClO^{-}$ (S29)

Figure S1. The schematic diagram of the experimental setup: (1) Low-pressure Hg UV lamp, (2) quartz tube, (3) cooling water, (4) photoreactor, (5) magnetic stirrer, (6) magnetic stirrer apparatus.

Figure S2. Removal of SLP under different oxidation treatment. Experimental conditions: $[SLP]_0 = 2 \mu mol/L$, $[NaClO]_0 = 100 \mu mol/L$, UV intensity = 0.12 mW·cm⁻², pH 7.0, T = 25 ± 1°C.

Figure S3. Effect of initial pH on SLP degradation by NaClO. Experimental conditions: $[SLP]_0 = 2 \mu mol/L$, $[NaClO]_0 = 100 \mu mol/L$, UV intensity = 0.12 mW·cm⁻², pH 7.0, T= 25 ± 1°C.

Figure S4. Effect of *t*-BuOH on SLP degradation by NaClO. Experimental conditions: $[SLP]_0 = 2 \mu mol/L$, $[NaClO]_0 = 100 \mu mol/L$, UV intensity = 0.12 mW·cm⁻², pH 7.0, T = $25 \pm 1^{\circ}$ C.

Figure S5. Effect of Br⁻ on SLP degradation by NaClO. Experimental conditions: $[SLP]_0 = 2 \mu mol/L$, $[NaClO]_0 = 100 \mu mol/L$, UV intensity = 0.12 mW·cm⁻², pH 7.0, T = $25 \pm 1^{\circ}$ C.

Figure S6. UPLC-MS/MS total ion chromatograms of SLP degradation at different

time. (a) 0 min; (b) 5 min; (c) 10 min; (d) 20 min; (e) 40 min; (f) All times. Experimental conditions: $[SLP]_0 = 10 \ \mu mol/L$, $[NaClO]_0 = 100 \ \mu mol/L$, UV intensity = 0.12 mW·cm⁻², pH 7.0, T = 25 ± 1°C.

Figure S7. Mass spectra of the intermediate products.

Compound	Proposed formula	Structure	CAS Number	LogP	pK _{a1}	pK _{a2}
Sulpiride	$C_{15}H_{23}N_3O_4S$	O CH ₃ H ₃ N O CH ₃	15676- 16-1	2.66660	9.0	10.19

Table S1. Chemical structures and properties of sulpiride.

Time (min)	Flow rate (mL/min)	Mobile phase A (%)	Mobile phase B (%)
0.00	0.400	5.0	95.0
0.50	0.400	5.0	95.0
1.50	0.400	50.0	50.0
3.50	0.400	95.0	5.0
4.50	0.400	95.0	5.0
4.60	0.400	5.0	95.0
5.00	0.400	5.0	95.0

Table S2. The gradient elution condition of sulpiride.

Compound	Parent ion (m/z)	Retention time (min)	Product ion (m/z)	Cone voltage (V)	Collision voltage (V)
Sulpiride	342.2	1.38	156	34	44
			214	34	30

Table S3. Optimized UPLC-MS/MS parameters for the sulpiride.

Time (min)	Flow rate (ml/min)	Mobile phase A (%)	Mobile phase B (%)
0.00	0.400	95.0	5.0
0.50	0.400	95.0	5.0
18.00	0.400	5.0	95.0
19.00	0.400	5.0	95.0
19.10	0.400	95.0	5.0
20.00	0.400	95.0	5.0

Table S4. The gradient elution condition of SLP intermediates identification.

Labels*	NPA atomic charges	$f(\mathbf{r})^+$	<i>f</i> (r)-
C1	-0.1994	0.0285	0.0299
C2	-0.2953	0.0820	0.0230
C3	-0.2703	0.0382	0.0235
C4	0.2681	0.0356	0.0208
C5	0.4909	0.0515	0.0116
C6	-0.9831	0.0357	0.0122
S7	0.2888	0.0160	0.0101
N8	-0.3619	0.0095	0.0200
09	-0.2028	0.0258	0.0217
O10	-0.2214	0.0238	0.0250
011	-0.2426	0.0131	0.0202
C12	-0.2928	0.0286	0.0085
C13	-0.2087	0.0391	0.0068
N14	0.0887	0.0212	0.0013
015	-0.3010	0.0534	0.0179
C16	-0.3683	0.0081	0.0045
C17	-0.3583	0.0016	0.0174
N18	0.2584	0.0015	0.1789
C19	-0.2056	0.0070	0.0252
C20	-0.4642	0.0063	0.0253
C21	-0.1589	0.0002	0.0224
C22	-0.3091	0.0022	0.0280
C23	-0.4589	0.0079	0.0182

Table S5. The natural population analysis (NPA)atomic charges and Fukui functions at nuclei for

 SLP molecule, all units are a.u.

* The labels are presented in Figure 6a.

Products	Proposed formula	Proposed structure	$[M+H]^+$
P1	$C_{15}H_{22}N_2O_3$	H ₃ C OH H H ₃ C O U CH ₃	279
Р2	$C_7H_{16}N_2O$	H ₂ N CH ₃	142
Р3	C ₈ H ₉ NO ₄ S	$ \begin{array}{c} $	214
P4	$\mathrm{C_{15}H_{23}N_3NaO_4S^+}$	O=S=O	365
Р5	$C_{13}H_{20}N_2O_4S$	$O = S = O$ $H_{3}C$ $H_{3}C$	300
P6	$\rm C_8H_8NNaO_4S$	O = S = O $O = S = O$ O O O O O O O O O	236
Ρ7	C7H9NO3S	$O = S = O$ H_3C'	187

 Table S6. Main fragment ions were obtained from MS analyses of sulpiride and its degradation

 products by NaClO.

P8 C_7H_8O	108	
--------------	-----	--