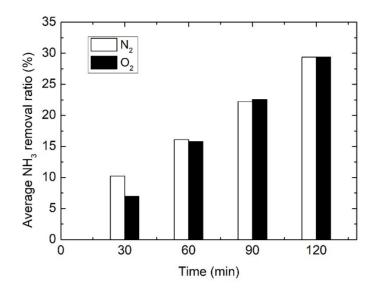
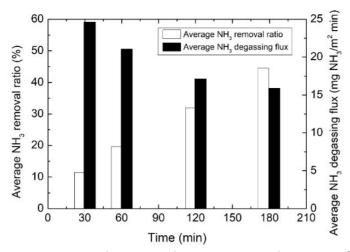
Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2022


Supporting Information

Characteristics (unit)	Value	
Area (m²)	1.4	
Shell side volume (L)	0.4	
Tube side volume (L)	0.15	
# of Fibers	9,500	
Internal diameter (µm)	220	
Outer diameter (µm)	300	
Wall thickness (µm)	40	
Material	Polypropylene	
Tortuosity	3	
Pore size (µm)	0.04	
Porosity (%)	40	


Table S1. Membrane characteristics of Liqui-Cel Extra-Flow (2.5 \times 8) ¹

Parameter	Ref. [2]	This study
COD (mg/L)	100 ± 28	100
TKN (mg/L)	572 ± 6.6	~ 560
NH4 ⁺ -N (mg/L)	567 ± 5.8	560
NO ₂ -N (mg/L)	-	-
NO₃ ⁻ N (mg/L)	7 ± 5.5	-
PO ₄ ³⁻ -P (mg/L)	0.7 ± 0.7	-
рН	9.4 ± 0.1	9.4
Alkalinity (mg/L as CaCO3)	1,260 ± 208	1,260

Table S2. Characteristics of an opto-electronic industrial wastewater and thesynthetic ammonia wastewater with similar composition. ²

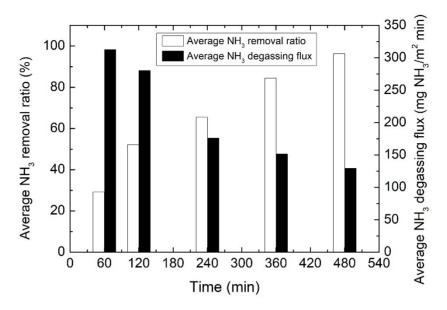


Fig. S1 Effect of type of sweep gas on average NH_3 removal ratio (Initial ammonia concentration: 530 mg/L, Temperature: 50°C, Feed water flow rate: 2.5 L/min, Sweep gas & flow rate: N_2 or O_2 4 L/min, Vacuum pressure: -0.7~0.8 bar, Initial pH: 10)

Fig. S2 Average NH_3 removal ratio and average NH_3 degassing flux treating synthetic ammonia wastewater with similar composition of an opto-electronic industrial wastewater (Initial ammonia concentration: 560 mg/L, Temperature:

50°C, Feed water flow rate: 2.5 L/min, Sweep gas & flow rate: N_2 & 4 L /min, Vacuum pressure: -0.7~0.8 bar, Initial pH: 9.3).

Fig. S3 Average NH₃ removal ratio and average NH₃ degassing flux treating high concentration of ammonia (Initial ammonia concentration: 6,000 mg/L, Temperature: 50° C, Feed water flow rate: 2.5 L/min, Sweep gas & flow rate: N₂ & 4 L /min, Vacuum pressure: -0.7~0.8 bar, Initial pH: 10)

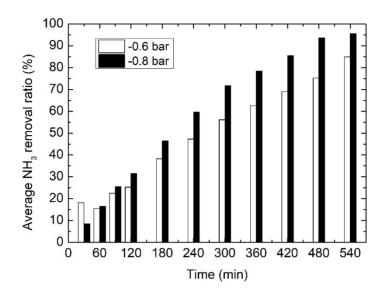


Fig. S4 Effect of vacuum pressure on average NH₃ removal ratio (Initial ammonia concentration: 530 mg/L, Temperature: 50°C, Feed water flow rate: 2.5 L/min, Sweep gas & flow rate: N₂ & 4 L /min , Vacuum pressure: -0.7~0.8 bar, Initial pH: 10)

References

- 1. A. C. Ni'am, Y. F. Wang, Chen, S. W. G. M. Chang, S. J. You, Simultaneous recovery of rare earth elements from waste permanent magnets (WPMs) leach liquor by solvent extraction and hollow fiber supported liquid membrane. Chemical Engineering and Processing-Process Intensification, 2020, **148**, 107831.
- 2. A. Daverey, S. H. Su, Y. T. Huang, J. G. Lin, Nitrogen removal from opto-electronic wastewater using the simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) process in sequencing batch reactor. Bioresource Technology, 2012, **113**, 225-231.