Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2023

## **SUPPORTING INFORMATION**

## Resource recovery technologies as microbial risk barriers: towards safe use of excreta in agriculture based on hazard analysis and critical control point

Wakana Oishi <sup>a</sup>\*, Björn Vinnerås<sup>b</sup>, Daisuke Sano <sup>a, c</sup>

<sup>a</sup> Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8597, Japan; <sup>b</sup> Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032, 75007, Uppsala, Sweden; <sup>c</sup> Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8597, Japan

\*Corresponding Author

Wakana Oishi, Ph.D.

Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University

Postal address: Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan

E-mail: wakana.oishi.d1@tohoku.ac.jp

Phone: +81-22-795-3584

## R code for estimation of parameters of Hom's model

```
d \le data.frame(t,N)
                         # t: every sampling time (day), N: concentration of
microorganisms at time t
                         # Default values of the estimates (k, m, sigma^2)
params0 <- c(1,1,0.1)
# Function for optimization
f1 <- function(p, data) {
 parameters<-c(k=p[1], m=p[2], sigma2=p[3])
 rss<-data[1,2]*exp(-p[1]*data[,1]^p[2])+parameters[3]
 n<-length(data)
sum(-log(data[,2]))-(n/2)*log(2*pi*parameters[3])-1/2/parameters[3]*sum((log(rss)-
\log(data[,2]))^{2}
}
fit0 <- optim(params0, f1, data=d, control=list(fnscale=-1)) # Optimization
                         # Confirm convergence
fit0$convergence
fit0$par
                         # Output estimates
```





Table S1: Estimated storage time of urine to achieve the target log reduction values of microorganism during thermal storage and storage with the presence of sunlight.

| Microorganisms  | day  | Temperature (°C) | Dilution ratio | Sunlight | References           |
|-----------------|------|------------------|----------------|----------|----------------------|
| Salmonella      | 0.15 | 65               | 0              | Yes      | Sangare et al., 2020 |
| Salmonella      | 0.25 | 46               | 0              | Yes      | Sangare et al., 2020 |
| E. coli         | 0.09 | 50               | 0              | Yes      | Sangare et al., 2020 |
| E. coli         | 0.09 | 45               | 0              | Yes      | Sangare et al., 2020 |
| E. coli         | 1    | 60               | 1.5            | No       | Zhou et al., 2017    |
| E. coli         | 0.5  | 70               | 1.5            | No       | Zhou et al., 2017    |
| Fecal coliforms | 0.25 | 60               | 1.5            | No       | Zhou et al., 2017    |
| Fecal coliforms | 0.25 | 70               | 1.5            | No       | Zhou et al., 2017    |
| Salmonella      | 0.2  | 29.1             | 0              | Yes      | Nordin et al., 2013  |
| E. coli         | 0.2  | 29.1             | 0              | Yes      | Nordin et al., 2013  |

| Enterococcus | 15.4 | 28.1 | 0 | Yes | Nordin et al., 2013 |
|--------------|------|------|---|-----|---------------------|
| Enterococcus | 3.6  | 29.1 | 0 | Yes | Nordin et al., 2013 |
| Ascaris egg  | 17   | 28.1 | 0 | Yes | Nordin et al., 2013 |
| MS2          | 41   | 29.1 | 0 | Yes | Nordin et al., 2013 |
| phiX174      | 185  | 29.1 | 0 | Yes | Nordin et al., 2013 |
| 28B          | 275  | 29.1 | 0 | Yes | Nordin et al., 2013 |

Figure S2: Conditions of fecal sludge (temperature, pH, moisture content, and ammonia concentration) in the literature we reviewed.



| Microorganisms | day | k (day <sup>-1</sup> ) | т    | Temperature (°C) | pН  | Moisture (%) | $NH_{3}\left(mM ight)$ | Desiccant     | References                 |
|----------------|-----|------------------------|------|------------------|-----|--------------|------------------------|---------------|----------------------------|
| Ascaris egg    | 2   | -                      | -    | 45               | 8.3 | 26.4         | 2.5                    | Dirt          | Cruz Espinoza et al., 2012 |
| Ascaris egg    | 42  | -                      | -    | 35               | 8.3 | 26.4         | 1.5                    | Dirt          | Cruz Espinoza et al., 2012 |
| Ascaris egg    | 14  | -                      | -    | 40               | 8.3 | 26.4         | 2                      | Dirt          | Cruz Espinoza et al., 2012 |
| Ascaris egg    | 5   | 1.7E+00                | 1.09 | 34               | 13  | 83           | 71                     | Ash           | Nordin et al., 2009        |
| Ascaris egg    | 49  | 2.4E-03                | 2.12 | 34               | 8.2 | 83           | 63                     | -             | Nordin et al., 2009        |
| Ascaris egg    | 115 | 3.1E-02                | 1.2  | 24               | 10  | 83           | 58                     | Ash           | Nordin et al., 2009        |
| Ascaris egg    | 63  | 7.4E-01                | 0.61 | 23               | 9.1 | 97.2         | 340                    | -             | Fidjeland et al., 2013     |
| Ascaris egg    | 38  | 5.2E-02                | 1.43 | 28               | 9.1 | 97.2         | 421                    | -             | Fidjeland et al., 2013     |
| Ascaris egg    | 46  | 1.3E-03                | 2.32 | 23               | 9.1 | 99.2         | 171                    | -             | Fidjeland et al., 2013     |
| Ascaris egg    | 42  | 2.7E-01                | 0.95 | 28               | 9.1 | 99.2         | 213                    | -             | Fidjeland et al., 2013     |
| Ascaris egg    | 44  | 1.5E-03                | 2.3  | 23               | 9.1 | 99.3         | 231                    | -             | Fidjeland et al., 2013     |
| Ascaris egg    | 38  | 7.3E-02                | 1.33 | 28               | 9.1 | 93           | 283                    | -             | Fidjeland et al., 2013     |
| Ascaris egg    | 47  | 9.7E-04                | 2.38 | 28               | 8.9 | 99.5         | 56                     | -             | Fidjeland et al., 2013     |
| Ascaris egg    | 93  | 6.6E-03                | 1.6  | 23               | 9   | 99.6         | 83                     | -             | Fidjeland et al., 2013     |
| Ascaris egg    | 51  | 6.3E-02                | 1.27 | 28               | 9   | 99.6         | 104                    | -             | Fidjeland et al., 2013     |
| Ascaris egg    | 188 | 7.8E-04                | 1.79 | 23               | 8.9 | 99.5         | 44                     | -             | Fidjeland et al., 2013     |
| Ascaris egg    | 452 | 4.8E-02                | 0.86 | 22               | 7.9 | 19           | 2.9                    | Oyster shells | Magri et al., 2013         |
| Ascaris egg    | 516 | 5.7E-12                | 4.5  | 10               | 9.1 | 97.2         | 170                    | -             | Fidjeland et al., 2013     |
| MS2            | 120 | 7.3E-02                | 1.18 | 26               | 9.1 | 99           | 169                    | -             | Magri et al., 2015         |
| MS2            | 113 | 2.1E-02                | 1.46 | 26               | 9   | 98.8         | 135                    | -             | Magri et al., 2015         |
| MS2            | 125 | 2.2E-02                | 1.42 | 26               | 9.1 | 99           | 150                    | -             | Magri et al., 2015         |
| MS2            | 110 | 1.3E-04                | 2.55 | 26               | 9   | 98.3         | 89                     | -             | Magri et al., 2015         |

Table S2: Estimated time of fecal sludge to achieve the target log reduction values of *Ascaris* egg and phages.

| MS2     | 183 | 8.0E-03 | 1.51  | 26 | 8.9 | 98.5 | 78  | -             | Magri et al., 2015 |
|---------|-----|---------|-------|----|-----|------|-----|---------------|--------------------|
| MS2     | 547 | 1.2E-01 | 0.82  | 26 | 9   | 98.5 | 69  | -             | Magri et al., 2015 |
| MS2     | 287 | 9.8E-04 | 1.76  | 26 | 8.9 | 99.3 | 36  | -             | Magri et al., 2015 |
| MS2     | 154 | 8.1E-02 | 1.1   | 22 | 8.6 | 10   | 11  | Oyster shells | Magri et al., 2013 |
| MS2     | 319 | 1.3E-01 | 0.884 | 22 | 6.9 | 9    | 0.2 | -             | Magri et al., 2013 |
| PhiX174 | 22  | 1.2E-04 | 3.9   | 28 | 9.1 | 93   | 314 | -             | Magri et al., 2015 |
| PhiX174 | 22  | 9.4E-06 | 4.8   | 28 | 8.9 | 98.8 | 155 | -             | Magri et al., 2015 |
| PhiX174 | 90  | 1.9E-02 | 1.55  | 28 | 9   | 99   | 124 | -             | Magri et al., 2015 |
| PhiX174 | 78  | 1.1E-03 | 2.26  | 28 | 9   | 98.3 | 124 | -             | Magri et al., 2015 |
| PhiX174 | 98  | 9.4E-02 | 1.18  | 28 | 8.9 | 99.3 | 56  | -             | Magri et al., 2015 |
| PhiX174 | 100 | 2.4E-03 | 1.97  | 28 | 9.1 | 99   | 225 | -             | Magri et al., 2015 |
| PhiX174 | 162 | 3.8E-02 | 1.24  | 28 | 9   | 98.5 | 91  | -             | Magri et al., 2015 |
| PhiX174 | 172 | 3.5E-02 | 1.24  | 28 | 9   | 98.5 | 130 | -             | Magri et al., 2015 |
| PhiX174 | 406 | 2.1E-01 | 0.766 | 28 | 8.9 | 98.5 | 78  | -             | Magri et al., 2015 |
| PhiX174 | 180 | 4.1E-02 | 1.2   | 26 | 9.1 | 99   | 169 | -             | Magri et al., 2015 |
| PhiX174 | 191 | 3.8E-02 | 1.2   | 26 | 9   | 93   | 193 | -             | Magri et al., 2015 |
| PhiX174 | 182 | 4.5E-02 | 1.18  | 26 | 9   | 98.8 | 135 | -             | Magri et al., 2015 |
| PhiX174 | 255 | 1.2E-01 | 0.936 | 26 | 9.1 | 99   | 150 | -             | Magri et al., 2015 |
| PhiX174 | 234 | 5.1E-02 | 1.1   | 26 | 9   | 98.3 | 89  | -             | Magri et al., 2015 |
| PhiX174 | 215 | 1.1E-02 | 1.4   | 26 | 9   | 98.5 | 69  | -             | Magri et al., 2015 |
| PhiX174 | 131 | 1.7E-01 | 0.99  | 22 | 8.6 | 10   | 11  | Oyster shells | Magri et al., 2013 |
| PhiX174 | 84  | 1.2E-01 | 1.17  | 22 | 8.1 | 17   | 6   | Oyster shells | Magri et al., 2013 |
| PhiX174 | 158 | 1.7E-02 | 1.4   | 22 | 6.9 | 9    | 0.2 | -             | Magri et al., 2013 |
| PhiX174 | 204 | 4.4E-03 | 1.59  | 14 | 8.9 | 99.3 | 14  | -             | Magri et al., 2015 |

Figure S3: Bucket latrine. A bucket or pan is placed in a chamber below a pedestal or seat with a drop hole. When the bucket is full, it is taken out from the chamber through the rear flap and emptied.



Figure S4: Single ventilated improved latrine (modified from Tilley et al. (2014)). Excreta, along with anal cleaning materials, are deposited into a pit. Typically, a pit is at least 3 m in depth and 1 m in diameter.



Figure S5: Septic tank (modified from Tilley et al. (2014)). A septic tank is a watertight chamber made of concrete, fibreglass, polyvinyl chloride, or plastic. The accumulated sludge and scum need to be periodically removed.



Figure S6: Twin pits and pour flush toilet (modified from Tilley et al. (2014)). Blackwater is collected in a leach pit and allowed to slowly infiltrate into the surrounding soil.



Figure S7: Double alternating dry pit (modified from Tilley et al. (2014)). One pit is used while the contents of another pit are partially sanitized for at least 1 to 2 years after several years of filling.



Figure S8: Double dehydration vaults (modified from Tilley et al. (2014)). Dehydration vaults are used to collect, store, and dry faces, whereas urine is separately collected in a urine tank.



| Microorganisms  | day   | k (day <sup>-1</sup> ) | т     | Temperature (°C) | pН   | Moisture (%) | $NH_{3}\left( mM ight)$ | Lime (wt%) | References            |
|-----------------|-------|------------------------|-------|------------------|------|--------------|-------------------------|------------|-----------------------|
| E. coli         | 1     | 1.4E+01                | 0.233 | 23               | 12.7 | 89           | 328                     | na         | Ogunyoku et al., 2016 |
| E. coli         | 0.2   | 1.3E-01                | 0.948 | 37               | 10   | 50           | na                      | na         | Hijikata et al., 2016 |
| E. coli         | 0.1   | 2.6E-01                | 0.816 | 37               | 10.5 | 50           | na                      | na         | Hijikata et al., 2016 |
| E. coli         | 0.2   | 3.3E-01                | 0.394 | 37               | 11   | 50           | na                      | na         | Hijikata et al., 2016 |
| E. coli         | 0.6   | 2.0E+01                | 0.7   | 27               | 10.5 | 90           | na                      | 14%        | Greya et al., 2016    |
| E. coli         | 0.01  | 2.0E-02                | 1     | 27               | 11   | 90           | na                      | 16%        | Greya et al., 2016    |
| Fecal coliforms | 0.021 | -                      | -     | 21               | 12.9 | 94           | na                      | 10%        | da Silva et al., 2018 |
| Fecal coliforms | 0.021 | -                      | -     | 21               | 12.9 | 94           | na                      | 20%        | da Silva et al., 2018 |
| Fecal coliforms | 0.021 | -                      | -     | 21               | 12.9 | 94           | na                      | 30%        | da Silva et al., 2018 |
| Enterococcus    | 1     | 4.2E-01                | 0.153 | 37               | 8.1  | 60           | 0                       | 1%         | Darimani et al., 2015 |
| Ascaris eggs    | 20    | 1.21E-05               | 2.2   | 23               | 12.8 | 89           | 464                     | na         | Ogunyoku et al., 2016 |
| MS2             | 2.3   | 1.2E+01                | 0.64  | 37               | 10   | 50           | na                      | na         | Hijikata et al., 2016 |
| MS2             | 0.3   | 6.1E+01                | 0.86  | 37               | 10.5 | 50           | na                      | na         | Hijikata et al., 2016 |
| MS2             | 0.2   | 8.8E+01                | 0.85  | 37               | 11   | 50           | na                      | na         | Hijikata et al., 2016 |
| MS2             | 0.3   | 2.2E-01                | 0.69  | 23               | 12.5 | 89           | 36                      | na         | Ogunyoku et al., 2016 |
| MS2             | 26    | 3.7E-01                | 0.13  | 23               | 12.7 | 89           | 328                     | na         | Ogunyoku et al., 2016 |
| E. coli         | 51    | 6.3E+00                | 0.2   | 27               | 10   | 90           | na                      | 11%        | Greya et al., 2016    |
| Ascaris egg     | 7122  | 2.65E-01               | 0.1   | 23               | 12.8 | 89           | 50                      | na         | Ogunyoku et al., 2016 |

Table S3: Estimated storage time of fecal sludge to achieve the target log reduction values of microorganisms by lime addition.

| Microorganisms | day  | <i>k</i> (day <sup>-1</sup> ) | т    | Temperature (°C) | pН  | Moisture (%) | Sunlight | References            |
|----------------|------|-------------------------------|------|------------------|-----|--------------|----------|-----------------------|
| E. coli        | 0.45 | 1.1E-01                       | 0.7  | 75               | 7.4 | 10           | Yes      | Sossou et al., 2016   |
| Enterococcus   | 0.65 | 6.9E-01                       | 1.06 | 75               | 7.4 | 10           | Yes      | Sossou et al., 2016   |
| E. coli        | 0.4  | 3.2E-02                       | 0.78 | 50               | na  | 50           | No       | Darimani et al., 2015 |
| E. coli        | 0.0  | 6.25E-01                      | 0.14 | 70               | na  | 50           | No       | Darimani et al., 2015 |
| Enterococcus   | 1.3  | 3.9E-02                       | 0.8  | 50               | na  | 50           | No       | Darimani et al., 2015 |
| Enterococcus   | 0.2  | 2.8E-01                       | 0.6  | 70               | na  | 50           | No       | Darimani et al., 2015 |
| Ascaris egg    | 0.4  | 4.0E-01                       | 2.44 | 75               | 7.4 | 10           | Yes      | Sossou et al., 2016   |
| Ascaris egg    | 0.3  | 8.8E-02                       | 1    | 50               | na  | 50           | No       | Darimani et al., 2016 |
| Ascaris egg    | 0.2  | 1.6E-01                       | 2.34 | 60               | na  | 50           | No       | Darimani et al., 2016 |
| MS2            | 0.9  | -                             | -    | 50               | na  | 70           | No       | Darimani et al., 2018 |
| MS2            | 1.2  | -                             | -    | 50               | na  | 60           | No       | Darimani et al., 2018 |
| MS2            | 3.8  | -                             | -    | 50               | na  | 50           | No       | Darimani et al., 2018 |
| MS2            | 1.5  | -                             | -    | 40               | na  | 70           | No       | Darimani et al., 2018 |
| MS2            | 2.3  | -                             | -    | 40               | na  | 60           | No       | Darimani et al., 2018 |
| MS2            | 4.3  | -                             | -    | 40               | na  | 50           | No       | Darimani et al., 2018 |
| Ascaris egg    | 220  | -                             | -    | 31               | 6.7 | 19           | Yes      | Dey et al., 2016      |
| E. coli        | 267  | 4.3E-05                       | 2.27 | 31               | 6.7 | 19           | Yes      | Dey et al., 2016      |

Table S4: Estimated storage time of fecal sludge to achieve the target log reduction values of microorganisms by solar drying and pasteurization.

| Microorganisms     | day  | <i>k</i> (day <sup>-1</sup> ) | т    | Temperature (°C) | References              |
|--------------------|------|-------------------------------|------|------------------|-------------------------|
| Ascaris egg        | 66   | -                             | -    | 37               | Kato et al., 2003       |
| Ascaris egg        | 6    | -                             | -    | 47               | Kato et al., 2003       |
| Ascaris egg        | 0.6  | 2.20E-01                      | 1.44 | 54               | Seruga et al., 2020     |
| Ascaris egg        | 0.8  | 2.80E-01                      | 1.19 | 54               | Seruga et al., 2020     |
| Ascaris egg        | 22.4 | 2.20E-02                      | 1.95 | 40               | Harroff et al., 2019    |
| Ascaris egg        | 28   | 1.55E-03                      | 2.61 | 39               | Harroff et al., 2019    |
| Ascaris egg        | 53   | 5.00E-04                      | 2.48 | 37               | Harroff et al., 2019    |
| E. coli            | 462  | -                             | -    | 28               | Kearney et al., 1993    |
| E. coli            | 51   | -                             | -    | 25               | Pandey and Soupir, 2011 |
| E. coli            | 45   | -                             | -    | 37               | Pandey and Soupir, 2011 |
| E. coli            | 3    | -                             | -    | 52.5             | Pandey and Soupir, 2011 |
| Salmonella         | 210  | -                             | -    | 28               | Kearney et al., 1993    |
| Salmonella         | 0.5  | 7.30E+00                      | 0.25 | 54               | Seruga et al., 2020     |
| Salmonella         | 0.3  | 8.90E+00                      | 0.21 | 54               | Seruga et al., 2020     |
| Enterococcus       | 0.5  | 7.20E+00                      | 0.26 | 54               | Seruga et al., 2020     |
| Enterococcus       | 0.5  | 6.90E+00                      | 0.27 | 54               | Seruga et al., 2020     |
| MS2                | 10   | 1.40E-01                      | 2    | 35               | Decrey and Kohn, 2017   |
| MS2                | 4    | 4.00E+00                      | 1    | 35               | Decrey and Kohn, 2017   |
| MS2                | 2    | 1.04E+01                      | 0.4  | 35               | Decrey and Kohn, 2017   |
| MS2                | 2    | 6.20E+00                      | 2.3  | 35               | Decrey and Kohn, 2017   |
| phiX174            | 214  | 1.90E+00                      | 0.37 | 35               | Decrey and Kohn, 2017   |
| B40-8              | 414  | 9.60E-01                      | 0.51 | 37               | Baert et al., 2010      |
| B40-8              | 466  | 1.67E+00                      | 0.41 | 37               | Baert et al., 2010      |
| B40-8              | 83   | 2.00E+00                      | 0.53 | 52               | Baert et al., 2010      |
| B40-8              | 10   | -                             | -    | 52               | Baert et al., 2010      |
| Human adenovirus   | 19   | 1.34E+00                      | 0.8  | 35               | Decrey and Kohn, 2017   |
| Human adenovirus   | 36   | 4.50E-02                      | 1.6  | 35               | Decrey and Kohn, 2017   |
| Murine norovirus 1 | 38   | 1.63E+00                      | 0.7  | 37               | Baert et al., 2010      |
| Murine norovirus 1 | 68.2 | 3.10E+00                      | 0.45 | 37               | Baert et al., 2010      |
| Murine norovirus 1 | 21.4 | 3.20E+00                      | 0.61 | 52               | Baert et al., 2010      |
| Murine norovirus 1 | 19.5 | 3.70E+00                      | 0.58 | 52               | Baert et al., 2010      |

Table S5: Estimated storage time of fecal sludge to achieve the target log reduction values of microorganisms by anaerobic digestion.

## References

- Sangare D, Brou AL, Sou/dakoure M, Tagro P V. Urine treatment by solar disinfection for agriculture reuse purpose in a poor rural context: case of Burkina Faso. J Water, Sanit Hyg Dev. 2020;1–9.
- Zhou X, Li Y, Li Z, Xi Y, Uddin SMN, Zhang Y. Investigation on microbial inactivation and urea decomposition in human urine during thermal storage. J Water Sanit Hyg Dev. 2017;7(3):378–86.
- 3. Nordin A, Niwagaba C, Jönsson H, Vinnerås B. Pathogen and indicator inactivation in sourceseparated human urine heated by the sun. J Water Sanit Hyg Dev. 2013;3(2):181–8.
- Cruz Espinoza LM, Yeh D, Vinnerås B, Rajaram L, Corvin J, Izurieta R. Inactivation of ascaris suum by ammonia in feces simulating the parameters of the solar toilet. J Appl Sci Environ Sanit [Internet]. 2012;7(3):173–82. Available from: http://libproxy.lib.unc.edu/login?url=http://search.proquest.com/docview/912918996?accounti d=14244
- 5. Nordin A, Nyberg K, Vinnerås B. Inactivation of ascaris eggs in source-separated urine and feces by ammonia at ambient temperatures. Appl Environ Microbiol. 2009;75(3):662–7.
- 6. Fidjeland J, Magri ME, Jönsson H, Albihn A, Vinnerås B. The potential for self-sanitisation of faecal sludge by intrinsic ammonia. Water Res. 2013;47(16):6014–23.
- Magri ME, Philippi LS, Vinnerås B. Inactivation of pathogens in feces by desiccation and urea treatment for application in urine-diverting dry toilets. Appl Environ Microbiol. 2013;79(7):2156–63.
- Magri ME, Fidjeland J, Jönsson H, Albihn A, Vinnerås B. Inactivation of adenovirus, reovirus and bacteriophages in fecal sludge by pH and ammonia. Sci Total Environ [Internet]. 2015;520:213–21. Available from: http://dx.doi.org/10.1016/j.scitotenv.2015.03.035
- 9. Tilley E, Ulrich L, Luethi C, Reymond P, Zurburegg C, Lüthi C, et al. Compendium of sanitation systems and technologies. Development. 2014;
- 10. Ogunyoku TA, Habebo F, Nelson KL. In-toilet disinfection of fresh fecal sludge with ammonia naturally present in excreta. J Water Sanit Hyg Dev. 2016;6(1):104–14.
- Hijikata N, Tezuka R, Kazama S, Otaki M, Ushijima K, Ito R, et al. Bactericidal and virucidal mechanisms in the alkaline disinfection of compost using calcium lime and ash. J Environ Manage [Internet]. 2016;181:721–7. Available from: http://dx.doi.org/10.1016/j.jenvman.2016.08.026

- Greya W, Thole B, Anderson C, Kamwani F, Spit J, Mamani G. Off-site lime stabilisation as an option to treat pit latrine faecal sludge for emergency and existing on-site sanitation systems. J Waste Manag. 2016;2016:1–8.
- da Silva DTG, Dias E, Ebdon J, Taylor H. Assessment of recommended approaches for containment and safe handling of human excreta in emergency settings. PLoS One. 2018;13(7):1–20.
- Darimani HS, Ito R, Sossou SK, Funamizu N, Amadou MH. Effect of post-treatment conditions on the inactivation rate of pathogenic bacteria after the composting process. Compost Sci Util. 2015;23(3):164–73.
- Sossou SK, Sou/Dakouré M, Hijikata N, Maiga AH, Funamizu N. Inactivation kinetics of indicator microorganisms during solar heat treatment for sanitizing compost from composting toilet. J Water Environ Technol. 2016;14(2):37–46.
- Darimani HS, Ito R, Maiga, Ynoussa, Sou M, Funamizu N, Maiga AH. Effect of posttreatment conditions on the inactivation of helminth eggs (Ascaris suum) after the composting process. Environ Technol. 2016;37:920–928.
- Darimani HS, Ito R, Funamizu N, Maiga AH. Effect of post-treatment conditions on the inactivation of MS2 bacteriophage as indicator for pathogenic viruses after the composting process. J Agric Chem Environ. 2018;07(02):73–80.
- 18. Dey D, Ridwanul ATMH, Kabir B, Ubaid SF. Fecal indicator and Ascaris removal from double pit latrine content. J Water Health. 2016;14(6):972–9.
- Kato S, Fogarty E, Bowman D. Effect of aerobic and anaerobic digestion on the viability of Cryptosporidium parvum oocysts and Ascaris suum eggs. Int J Environ Health Res. 2003;13(2):169–79.
- Seruga P, Krzywonos M, Paluszak Z, Urbanowska A, Pawlak-Kruczek H, Niedźwiecki Ł, et al. Pathogen reduction potential in anaerobic digestion of organic fraction of municipal solid waste and food waste. Molecules. 2020;25(2):1–13.
- Harroff LA, Liotta JL, Bowman DD, Angenent LT. Current time-temperature relationships for thermal inactivation of Ascaris eggs at mesophilic temperatures are too conservative and may hamper development of simple, but effective sanitation. Water Res X [Internet].
   2019;5:100036. Available from: https://doi.org/10.1016/j.wroa.2019.100036
- 22. Kearney TE, Larkin MJ, Levett PN. The effect of slurry storage and anaerobic digestion on survival of pathogenis bacteria. J Appl Bacteriol. 1993;74:86–93.
- 23. Pandey PK, Soupir ML. Escherichia coli inactivation kinetics in anaerobic digestion of dairy

manure under moderate, mesophilic and thermophilic temperatures. AMB Express. 2011;1(1):1–10.

- 24. Decrey L, Kohn T. Virus inactivation in stored human urine, sludge and animal manure under typical conditions of storage or mesophilic anaerobic digestion. Environ Sci Water Res Technol. 2017;3(3):492–501.
- 25. Baert L, De Gusseme B, Boon N, Verstraete W, Debevere J, Uyttendaele M. Inactivation of murine norovirus 1 and Bacteroides fragilis phage B40-8 by mesophilic and thermophilic anaerobic digestion of pig slurry. Appl Environ Microbiol. 2010;76(6):2013–7.