GC-HRMS analysis to evaluate the effectiveness of ozone disinfection for the removal of micropollutants from wastewater

Raíssa Olivia Barbacena^a, Joyce Cristale^{a,b}, Carlos Barata^c, Silvia Lacorte^{c*}, Renato F. Dantas^{a*}

- ^a School of Technology, University of Campinas UNICAMP, Paschoal Marmo 1888, 13484332, Limeira, SP, Brazil
- ^b Center for Nuclear Energy in Agriculture, University of São Paulo (CENA-USP), Av Centenário 303, 13416-000 Piracicaba SP, Brazil
- ^c Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain

Appendices

Table A.1. Instrumental conditions for chromatographic separation and data acquisition

Item	Value
TRACE 1300 Series GC method	
Splitless time	1 min
Initial Temperature	70° C
Carrier flow	1 mL/ min
Ramp 1	6°C to 175°C, hold time 4 min
Ramp 2	3° C to 235°C, hold time 0 min

^{*}Corresponding author e-mail: bqam@cid.csic.es, renatofalcaod@ft.unicamp.br

7°C to 305°C, hold time 8 min	Ramp 3		
	Q Exactive GC		
60 min	Method duration (time)		
5 ppm	Mass tolerance (+/-)		
nergy 70 eV	Ionization – Electron energy		
erature 280° C	MS transfer line temperature		
260° C	Ion source temperature		
70 to 1000 m/z	Scan range		
70 to 1000 m/z	Scan range		

Text S1 Toxicity test with neonate Daphnia

The methodology used to evaluate the acute toxicity was based on the OECD 202. After extraction, the evaporated extracts were suspended with 0.5 mL of acetone, and then inoculated in a 100 mL glass bottle, allowed to evaporate forming a residue thin layer in the walls. Residues were then suspended again in 50 mL water, heavily vortexed and distributed in two 20 mL vials. To each vial, 10 neonate Daphnia were inoculated. After 48 h, their immobility was monitored (table S1). Mortality responses in the different treatments were compared to those of blank samples using a nested hierarchical ANOVA design with vial nested across replicated treatments.

Table S2 Results obtained for the toxicity test using neonate Daphnia.

	Ozone dose (mg O ₃ L ⁻¹)	Duplicate	Deaths	Deaths	Total	%	%	Mean	SD
MS	0	A	0	0	10	0	0	0	0
		В	0	0	10	0	0	0	0
	0 + SPK*	A	0	0	10	0	0	0	0
		В	0	0	10	0	0	0	0
	3.5	A	0	0	10	0	0	0	0

		В	1	1	10	10	10	10	0
-	7.6	A	0	0	10	0	0	0	0
		В	0	0	10	0	0	0	0
-	15.2	A	0	0	10	0	0	0	0
		В	0	0	10	0	0	0	0
-	22.8	A	2	3	10	20	30	25	3.53
		В	2	1	10	20	30	25	3.53
<u>-</u>	Blank**	A	0	0	10	0	0	0	0
		В	1	0	10	10	0	5	3.53
Λ	0	A	0	0	10	0	0	0	0
		В	0	0	10	0	0	0	0
	3.5	A	0	0	10	0	0	0	0
		В	0	0	10	0	0	0	0
	7.6	A	0	0	10	0	0	0	0
		В	2	1	10	20	10	15	3.53
MU	15.2	A	0	0	10	0	0	0	0
-		В	0	0	10	0	0	0	0
	22.8	A	0	0	10	0	0	0	0
		В	3	2	10	30	20	25	3.53
_	Blank**	A	1	1	10	10	10	10	0
		В	1	0	10	10	0	5	3.53
	Test control	0	0	10	0	0		0	0

^{*} spiked raw sample

^{**}experimental blanks (extraction procedures)