Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2023

Supplementary Materials

Fabrication of Sm₂O₃/In₂S₃ photocatalyst for boosting Ciprofloxacin oxidation and Cr (VI) reduction: Process parameters and degradation mechanism

M. Murugalakshmi ^{a1}, Kadarkarai Govindan ^{b1}, Muthu Umadevi ^c, Carmel B Breslin ^d

and Velluchamy Muthuraj **

^aDepartment of Chemistry, V. H. N. Senthikumara Nadar College (Autonomous), Virudhunagar-626 001, Tamil Nadu, India.

^bDepartment of Civil, Construction and Environmental Engineering, Marquette University,

1637 West Wisconsin Avenue, Milwaukee, WI – 53233, United States of America.

°PG & Research Department of Chemistry, Nehru Memorial College, Puthanampatti, Tiruchirappalli, Tamil Nadu – 621 007

^dDepartment of Chemistry, Maynooth University, W23F2H6 Maynooth, Co. Kildare, Ireland.

Corresponding author:

Email address: <u>muthuraj.v@vhnsnc.edu.in</u> (Velluchamy Muthuraj), Mobile: +91 94444 27485.

¹ These authors contributed equally to this work.

Nanomaterial	Dislocation density $\delta \times 10^{-3} \text{ nm}^{-2}$	Microstrain ε × 10 ⁻³	Crystallite size (D) nm	Stacking fault (degree)
$Sm_2O_3/20 \text{ wt\% } In_2S_3$	1.96	13.26	22.58	0.009203
$Sm_2O_3/15wt\%\ In_2S_3$	1.21	4.85	28.69	0.00544
$Sm_2O_3/10wt\% In_2S_3$	1.28	8.79	27.94	0.00603
$Sm_2O_3/5wt\%$ In_2S_3	1.53	5.77	25.41	0.003988
In_2S_3	2.07	12.62	24.27	0.008816
Sm_2O_3	1.69	6.08	21.98	0.006419

 Table S1. Crystallite size of different photocatalysts

Text S1 Materials

All chemicals (analytical grade reagents), including the precursors, indium nitrate pentahydrate ($In(NO_3)_3.10H_2O$), samarium nitrate hexahydrate ($Sm(NO_3)_3.6H_2O$), urea ($CS(NH_2)_2$), sodium hydroxide (NaOH), hydrochloric acid (HCl, 37%), and model pollutants $K_2Cr_2O_7$ (99.0%), and ciprofloxacin ($C_{17}H_{18}FN_3O_3$) were purchased from Sigma Aldrich, India. Sodium hydroxide (NaOH, 40 g mol⁻¹), sodium chloride (NaCl, 58.44 g mol⁻¹), sodium sulfate (Na₂SO₄ 142.04 g mol⁻¹), disodium hydrogen phosphate (Na₂HPO₄ 141.96 g mol⁻¹), tri-sodium phosphate (Na₃PO₄, 169.93 g mol⁻¹) sodium carbonate (Na₂CO₃, 105.99 g mol⁻¹), and sodium bicarbonate (NaHCO₃, 84.01 g mol⁻¹) were also received from Sigma Aldrich, India. All chemicals and reagents were used directly without any further purification.

Text S2 Analytical Characterization

Powder X-ray diffraction (XRD) was used to determine the phase purity and crystalline structure of the prepared materials. X-ray powder diffraction (XRD) patterns were collected on PANalytical X'Pert PRO powder X-ray Diffractometer with Cu K α radiation (λ =1.5418 Å) in the diffraction angle range 2 θ = 20-80°. The accelerating voltage and emission current were 40 kV and 30 mA. Surface morphology and microstructure analysis were performed using CARL ZEISS scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDS) using the AMETEK-EDAX (Z2e Analyzer) and Philips's transmission electron microscopy (PHILIPS CM 200 model). The qualitative elemental analysis and mapping were also obtained from an energy dispersive X-ray (EDS) spectrometer.

Optical properties of the synthesized materials were determined through UV–visible diffuse reflectance spectra (DRS), and these were recorded at room temperature by utilizing a Shimadzu UV-2450 spectrophotometer equipped with an integrating sphere using Ba₂SO₄ as the standard reflectance. Further, Brunauer-Emmett-Teller (BET) specific surface area of the samples were determined by nitrogen adsorption - desorption. Photoluminescence (PL) spectra were also recorded by using a Cary Eclipse fluorescence spectrometer. The detailed qualitative chemical analysis was carried out by X-ray photoelectron spectroscopy (XPS). XPS analysis was performed using a Thermo Scientific Multi-Lab 2000 instrument with an Al Ka monochromator (1486.6 eV) as a radiation source. Electrochemical impedance spectroscopy (EIS) analysis was determined on an electrochemical workstation CHI660E using a standard three-electrode system, with glassy carbon (GC) as the working electrode, platinum wire as the counter electrode and Ag/AgCl as the reference electrode.

Figure S1. SEM images of (a) In_2S_3 , (b) Sm_2O_3 , (c) $Sm_2O_3/15$ wt % In_2S_3 and (d) EDS spectrum of $Sm_2O_3/15$ wt % In_2S_3 .

Figure.

S2. EDX

\

Pore diameter (nm)

Figure. S4 (a) N_2 adsorption/desorption, and (b) pore size distribution profiles of In_2S_3 , Sm_2O_3 , and $Sm_2O_3/15$ wt % In_2S_3 nanocomposite.

Figure. S5 Electrochemical impedance spectra of different photocatalyst.

Figure. S6 Photoluminescent emission spectra of $Sm_2O_3,\,In_2S_3,\,and\,Sm_2O_3/$ 15 wt % In_2S_3

Figure. S7. Normalized CIP concentration profile at different catalyst $(\text{Sm}_2\text{O}_3/15\text{wt }\% \text{In}_2\text{S}_3)$ loading with constant CIP dosage = 20 mg/L (a); and different CIP dosage at 50 mg/L catalyst loading (c). Pseudo-first order rate constant ($k_{obs.}$) for the photocatalytic degradation of CIP by different catalyst (b) and various CIP dosage (d).

Figure. S8 Photocatalytic reduction of Cr(VI) by different catalyst, and (b) pseudofirst order kinetic profiles . Catalyst loading = 50 mg/L, and Cr(VI) = 40 mg/L.

Figure. S9 Effect of pH on Cr (VI) degradation in $Sm_2O_3/15$ wt % In_2S_3 , photocatalysis.

Figure. S10. (a) Reusable test for the photocatalytic degradation of CIP and Cr(VI) reduction using recycled $Sm_2O_3/15wt\%$ In₂S₃ photocatalyst. (b) XRD patterns of $Sm_2O_3/15wt\%$ In₂S₃ before and after the photocatalysis experiments.

Figure. S11 EPR spectra of TMP adduct from $Sm_2O_3 / 15wt \% In_2S_3$.TMP = 50 mM, Catalyst loading = 50 mg/L and CIP dosage = 20 mg/L.

Fig. S12 Total organic carbon reduction at different photocatalysts. Catalyst loading = 50 mg/L, and CIP dosage = 20 mg/L.

Figure. S13. LC-MS spectra of different photocatalytic system $Sm_2O_3 / 15wt \% In_2S_3$.