1	Supplementary information for
$\frac{2}{3}$	Prewhitening and Normalization Help Detect a Strong Cross-Correlation Between
4	Daily Wastewater SARS-CoV-2 RNA Abundance and COVID-19 Cases in a
5	Community
6	
7	Min Ki Jeon ¹ , Bo Li ¹ , Doris Yoong Wen Di ¹ , and Tao Yan ^{1*}
8	
9	¹ Department of Civil and Environmental Engineering, University of Hawaii at Manoa,
10	Honolulu, HI 96822
11 12	

Table S1. Primers and probes used for qPCR assays for detection of SARS-CoV-2 genes and fecal viral indicators from wastewater

Taget gene Primer/probe		Sequence (5' $ ightarrow$ 3')	Amplicon size (bp)	Concentration (nM)	Reference
	2019-nCoV_N1-F	GAC CCC AAA ATC AGC GAA AT		150	(1)
SARS-CoV-2 N1	2019-nCoV_N1-R	TCT GGT TAC TGC CAG TTG AAT CTG	72	150	
	2019-nCoV_N1-P	FAM-ACC CCG CAT TAC GTT TGG TGG ACC-BHQ1		50	
	2019-nCoV_N1-F	TTA CAA ACA TTG GCC GCA AA		150	
SARS-CoV-2 N2	2019-nCoV_N1-R	GCG CGA CAT TCC GAA GAA	67	150	
	2019-nCoV_N1-P	FAM-ACA ATT TGC CCC CAG CGC TTC AG-BHQ1		50	
	E_Sarbeco_F	ACA GGT ACG TTA ATA GTT AAT AGC GT		150	(2)
SARS-CoV-2 E	E_Sarbeco_R	ATA TTG CAG CAG TAC GCA CAC A	113	150	
	E_Sarbeco_P	FAM-ACA CTA GCC ATC CTT ACT GCG CTT CG-BHQ1		50	
	G2_F	TTA CTG TCG TTC CTG TTA GCA ATG		400	(3)
F+ RNA coliphages Group II (G2)	G2_R	CRC CTG ACG CAC GAT AAC T	104	400	
	G2_P	FAM-ACG GCG TCG CTG AGT GGC TTT C-BHQ1		200	
	G3_F	TAA ATC CCA CYA ACG GYG TTG C		400	
E+ RNA coliphages	G3_R	TTI CGA TTR CGI GAA GGC TG	GGC TG 400 G TTA CCG TTT- 108 G TYA CAA TTT 200 200		
Group III (G3)	G3_P1	FAM-TGG AGA AGC GTG TTA CCG TTT- BHQ1			
	G3_P2	FAM-TGG AGA AGC GTG TYA CAA TTT CTG TRT C-BHQ1			

	PMMoV-F	GAG TGG TTT GAC CTT AAC GTT GA		200	(4)
Pepper mild mottle virus (PMMoV)	PMMoV-R	TTG TCG GTT GCA ATG CAA GT	68	200	
	PMMoV-P	FAM-CCT ACC GAA GCA AAT G-IABkFQ		100	
	BCoV-F	CTG GAA GTT GGT GGA GTT		150	(5)
Bovine coronavirus (BCoV)ª	BCoV-R	ATT ATC GGC CTA ACA TAC ATC	85	150	
	BCoV-P	FAM-CCT TCA TAT CTA TAC ACA TCA AGT TGT T-BHQ1		50	

14 ^a BCoV was directly spiked into the solid subsamples after collection and before viral RNA extraction; for the liquid subsamples,

15 BCoV was spiked into the supernatant after centrifugation and before PEG precipitation. The quantity initially seeded into each batch

16 of solid and liquid wastewater samples was ~800 genome copy/spike (Batch 1; 8/31/2020 to 9/2/2020, n = 6), and later increased to

17 higher levels to facilitate data analysis: 1.3×10^7 genome copy/spike (Batch 2; 9/8/2020 to 9/14/2020, n = 12), and 3.7×10^7 genome

18 copy/spike (Batch 3; 9/21/2020 to 9/28/2020, *n* = 14), and 2.5 × 10⁷ genome copy/spike (Batch 4; 9/29/2020 to 10/4/2020, *n* = 14).

19 No significant difference in recovery was observed between the different spiking concentrations. Assessment of recovery based on

20 the spiked BCoV showed that the averaged recovery ratios were 1.7% (σ = 1.7%) for the liquid subsamples (*n* = 46) and 0.25% (σ =

21 0.36%) for solid subsamples (n = 46).

22

Target gene	Temperature (°C)	Time	Cycle	Calibration equation	qPCR efficiency R ²		Limit of quantification (GC/rxn)	Limit of detection (GC/rxn)
SARS-CoV-2 N1	95	2 min	1	y = -3.484x + 40.429	93.8%	0.991	10	2.5
	95	3 sec						<u> </u>
SARS-CoV-2 N2	55	30 sec	- 45	y = -3.420x + 38.228	96.1%	0.999	10	2.5
	95	3 min	1	y = -3.403x + 37.882	96.8% 0		10	2.5
SARS-CoV-2 E	95	15 sec	45			0.999		
	58	30 sec	- 45					
G2	95	2 min	1	y = -3.552x + 38.841	91.4% 0.994	10	2.5	
	95	15 sec						
G3	56	30 sec	45	y = -3.571x + 39.277	90.6%	0.998	10	2.5
	95	2 min	1		106.6% 0.9			2.5
	95	15 sec		y = -3.238x + 38.075				
PMMoV	53	30 sec	45			0.999	10	
	72	30 sec						
	95	2 min	1		102.0%	0.998	10	5
BCoV	95	15 sec	45	y = -3.286x + 38.993				
	56	28 sec	43					

Table S2. Thermal cycling conditions of qPCR assays and calibration curve information

25 Table S3. Slope, trend, and normality test results of before and after prewhitening of SARS-CoV-2 abundance (both raw and

26 normalized) from wastewater and daily clinical case numbers

Sample	Analysis	Prewhitening	Average	Standard Deviation	Maximum value	Minimum value
	Sland	Before	-0.056	0.024	-0.021	-0.1
	Siope	After	0.002	0.005	0.013	-0.01
Honouliuli	Mann-Kendall trend test <i>p</i> -value ^a	Before	0.013	0.034	0.137	0
WWTP (<i>n</i> = 24)		After	0.809	0.159	1	0.435
	Shapiro-Wilk test <i>p</i> -value ^b	Before	0.101	0.104	0.445	0.002
		After	0.443	0.252	0.963	0.093
	Qiana.	Before	-0.055	0.02	-0.014	-0.1
	Siope	After	0.003	0.005	0.011	-0.007
Sand Island	Mann-Kendall trend test <i>p</i> - value	Before	0	0.001	0.007	0
WWTP (<i>n</i> = 24)		After	0.799	0.169	1	0.443
	Shanira Wilk toot n value	Before	0.069	0.1	0.449	0.002
	Shapiro-wirk test <i>p</i> -value	After	0.344	0.236	0.831	0.055
	Slana	Before	-	-	-3.5081	
	Sibpe	After	-	-	0.2655	
Daily clinical	Mann-Kendall trend test <i>p</i> -	Before	-	-	0	
= 1)	value	After	-	-	0.308	
-,		Before	-	-	0.002	
	Shapiro-wilk test <i>p</i> -value	After	-	-	0.436	

27 ^a The null hypothesis of Mann-Kendall trend test is that the data has no trend or serial correlation structure throughout the observed

28 time points.

29 ^b The null hypothesis of Shapiro-Wilk test is that the data is normally distributed.

30

Figure S1. Cross-correlation between the non-prewhitened COVID-19 new case numbers and the non-prewhitened SARS-CoV-2 RNA normalized abundance in wastewater samples from the SI WWTP. The normalized abundance was calculated by dividing SARS-CoV-2 RNA abundance by F+ RNA coliphage Group II (A, B), Group III (C, D), and PMMoV (E, F). All normalized abundances were transformed into log forms. Red dashed lines represent a 95% level of significance and the *p*-value of the correlation less than 0.05 are displayed as asterisks. The middle, upper, and lower lines in the box of the boxplot represent the median, 25th, and 75th percentiles, respectively, and the whiskers represent the largest and smallest values outside of the interquartile range.

40

41 Figure S2. Cross-correlation between the non-prewhitened COVID-19 new case numbers and 42 the non-prewhitened SARS-CoV-2 RNA normalized abundance in wastewater samples from the 43 HO WWTP. The normalized abundance was calculated by dividing SARS-CoV-2 RNA 44 abundance by F+ RNA coliphage Group II (A, B), Group III (C, D), and PMMoV (E, F). All 45 normalized abundances were transformed into log forms. Red dashed lines represent a 95% level of significance and the *p*-value of the correlation less than 0.05 are displayed as asterisks. 46 47 The middle, upper, and lower lines in the box of the boxplot represent the median, 25th, and 75th 48 percentiles, respectively, and the whiskers represent the largest and smallest values outside of 49 the interquartile range. 50

51 References

52

Lu X, Wang L, Sakthivel SK, Whitaker B, Murray J, Kamili S, et al. US CDC real-time
 reverse transcription PCR panel for detection of severe acute respiratory syndrome coronavirus
 Emerging infectious diseases. 2020;26(8):1654.

Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, et al. Detection of
 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance.
 2020;25(3):2000045.

59 3. Friedman SD, Cooper EM, Calci KR, Genthner FJ. Design and assessment of a real time 60 reverse transcription-PCR method to genotype single-stranded RNA male-specific coliphages 61 (Family Leviviridae). Journal of virological methods. 2011;173(2):196-202.

Haramoto E, Kitajima M, Kishida N, Konno Y, Katayama H, Asami M, et al. Occurrence of
pepper mild mottle virus in drinking water sources in Japan. Applied and environmental
microbiology. 2013;79(23):7413-8.

5. Decaro N, Elia G, Campolo M, Desario C, Mari V, Radogna A, et al. Detection of bovine
coronavirus using a TaqMan-based real-time RT-PCR assay. Journal of virological methods.
2008;151(2):167-71.

68