Electronic Supplemental Information

Non-conventional low-temperature reverse water-gas shift reaction over highly dispersed Ru catalysts in an electric field

Ryota Yamano^a, Shuhei Ogo^b, Naoya Nakano^a, Takuma Higo^a, and Yasushi Sekine^{*a}

Affiliation:

^a Department of Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo, 169-8555,

Japan

^b Department of Marine Resources Science, Faculty of Agriculture and Marine Science, Kochi University, Nankoku, 783-8502, Japan

Experimental procedure

 Table S1. Precursors used for supports synthesis

Atoms / -	Precursor / -
Ti	[(CH ₃) ₂ CHO] ₄ Ti
Zr	$ZrO(NO_3)_2 \bullet 2H_2O$
Ce	$Ce(NO_3)_3 \bullet 6H_2O$
Ca	$Ca(NO_3)_2 \bullet 4H_2O$

Figure S1. A schematic image of the apparatus for the catalytic activity tests.

Figure S2. A schematic image of the apparatus for *in-situ* DRIFTS measurements.

Characterisation of the catalysts

To confirm the metal dispersion of catalysts synthesized using different preparation methods, FE-TEM measurements were taken. Representative images of the catalysts and the size distribution of Ru particles are shown in **Figure S3**, demonstrating that the colloidal nanoparticle deposited 1.5wt% Ru/ZrTiO₄ catalyst has smaller Ru particles (2.37 nm average particle size) than those of the 1.5wt% Ru/ZrTiO₄ catalyst supported by the conventional impregnation method (7.97 nm average particle

size). The image for after the reaction is shown in **Figure S4**, and the catalyst maintained almost the same structure even after the electric field application.

Figure S3. Representative TEM images of (A)-(B) 1.5wt%Ru/ZrTiO₄ (colloidal nanoparticles deposited), (D)-(E) 1.5wt% Ru/ZrTiO₄ (impregnation method) and (C), (F) corresponding particle size distributions.

Figure S4. Representative TEM images of (A)-(B) 1.5wt%Ru/ZrTiO₄ (colloidal nanoparticles deposited) after the RWGS reaction for 60 minutes with the electric field (CO₂: H₂: Ar = 1: 1: 2; 100 SCCM total flow rate; 5 mA input current) and (C) corresponding particle size distribution.

Activity tests

 Table S2. Results of activity tests over various supports (Ru colloidal nanoparticles deposited catalysts) in the electric field

Catalysts*	Temp. / K	Voltage /V	CO ₂ conv. / %	CO sel. / %	CO formation rate per input power / mmol kJ ⁻¹
1.5wt% Ru/ZrTiO ₄	511	274	11.2	95.9	1.30
1.7wt% Ru/Ce _{0.5} Zr _{0.5} O ₂	525	398	11.7	91.9	1.05
1.3wt% Ru/CaTiO ₃	514	334	12.3	86.2	1.11
2.0wt% Ru/CeO ₂ (JRC-CEO-01)	472	160	3.5	94.0	0.638

 CO_2 : H₂: Ar = 1: 1: 2; 100 SCCM total flow rate; 100 mg catalyst weight; 5.0 mA input current; *the

Ru loading weight was evaluated from ICP-OES measurements.

Figure S5. Effects of imposed current on CO_2 conversion and CO selectivity over the Ru(col)/ZrTiO₄ catalyst with the electric field at 423 K; CO_2 : H₂: Ar = 1: 1: 2; 100 SCCM total flow rate; 100 mg catalyst weight.

Figure S6. Effects of imposed power on CO_2 conversion over the $Ru(col)/ZrTiO_4$ catalyst with the electric field at 423 K; CO_2 : H₂: Ar = 1: 1: 2; 100 SCCM total flow rate; 100 mg catalyst weight.

Figure S7. *I-V* characteristic profiles in the electric field over the $Ru(col)/ZrTiO_4$ catalyst at 423 K; CO_2 : H₂: Ar = 1: 1: 2; 100 SCCM total flow rate; 100 mg catalyst weight.

Figure S8. Catalytic stability during the reaction after purge flow (Ar, H₂, CO₂) over the Ru(col)/ZrTiO₄ catalyst without the electric field at 593 K (left) and with the electric field (right); CO₂: H₂: Ar = 1: 1: 2; 100 SCCM total flow rate; 100 mg catalyst weight.

Figure S9. Effect of the contact time (*W/F*) on CO_2 conversion and CO selectivity of Ru(col)/ZrTiO₄ catalyst (A) without the electric field at 593 K and (B) with the electric field (5 mA) at 423 K; CO₂: H₂: Ar = 1: 1: 2, total flow rate: 20-200 SCCM; input current: 5.0 mA; 100 mg catalyst weight.

Figure S10. *In-situ* DRIFTS spectra under the RWGS reaction atmosphere over the $Ru(col)/ZrTiO_4$ catalyst without the electric field at 373 K-673 K in all measured wavenumber regions (1000-4000 cm⁻¹).

Figure S11. *In-situ* DRIFTS spectra under the RWGS reaction atmosphere over the Ru(col)/ZrTiO₄ catalyst recorded during applying the electric field (EF) with different input currents at 423 K; CO₂: H₂: Ar = 1: 1: 2; 40 SCCM total flow rate; 1.0 or 10 mA input current.

Figure S12. ESR spectra of the Ru(col)/ZrTiO4 catalyst before and after applying the electric field

(EF).

Figure 13. Mass signal of H_2 and H_2O under the reduction atmosphere over the Ru/ZrTiO₄ catalyst with/without applying the electric field (EF) at 523-773 K; H_2 : Ar = 1: 19, total flow rate: 100 SCCM.

Figure S14. Mass signal of H_2 and H_2O under the reduction atmosphere over the Ru/ZrTiO₄ catalyst during applying the electric field (EF) at 423 K; H_2 : Ar = 1: 19, total flow rate: 100 SCCM, imposed current: 5.0 mA.