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Methods

Chemicals 

Sodium tungstate dihydrate (Na2WO4·H2O, 99.5%) and nitric acid (≤ 20%) were obtained from 

Sinopharm Chem. CO2 and Ar (99.999%) were provided by Nanjing Special Gas Company. 

Unless otherwise specified, all the materials were used as received without further purification.

Synthesis of WO3·H2O nanosheets

Typically, 10 mg sodium tungstate dihydrate were dissolved in 10 mL deionized water with 

vigorous stirring at room temperature for 30 minutes, followed by rapidly adding 1 mL nitric 

acid and kept for another 22 h. The color of solution changed from milky to pale yellow. The 

resulted suspension was washed with absolute ethyl alcohol several times and dried in oven at 

80 °C for 12 h. Afterwards, the obtained WO3·H2O powder was finely ground for further use. 
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Synthesis of WO3-x

The WO3-x catalysts were obtained by placing the multilayer WO3·H2O precursor (50 mg) in 

the tube furnace and calcined at 450 °C for 40 and 60 min under a hydrogen flow (H2/Ar, v/v = 

20%), or calcined at 700 °C for 5 s in air, denoted as H-40, H-60, and A-5, respectively.

Materials characterizations 

Transmission electron microscope (TEM) was utilized to investigate the morphology of the 

photocatalysts. High-resolution transmission electron microscope (HRTEM) images of H-40 

was obtained using a transmission electron microscope (JEM-ARM200F NEOARM, Japan) 

operated at an accelerating voltage of 200 kV. High-resolution transmission electron 

microscope (HRTEM) images of other samples were obtained using an emission electron 

microscope (JEOL JEM-F200, Japan) operated at an accelerating voltage of 200 kV. The TEM 

samples were prepared by dropping the solution onto a molybdenum grid with ultrathin carbon 

supporting film and dried in air. Electron paramagnetic resonance (EPR) spectrogram were 

recorded using an EPR spectroscopy (Bruker EMXnano, Germany) at 100 K. X-ray 

photoelectron spectroscopy (XPS) measurements of samples were carried out using a X-ray 

photoelectron spectrometer with Al Kα as the X-ray source, and all binding energy of samples 

were corrected by referencing the C 1s peak to 284.8 eV. The crystal structures of the samples 

were analyzed by using an X-ray powder diffractometer (SmatrLab9kW, Japan) equipped with 

Cu Kα radiation (λ = 0.15418 nm). The Fourier transform infrared (FT-IR) spectrum was 

recorded on a FT-IR spectrometer (Thermofisher Nicolet iS 50, American). The Raman spectra 

were obtained on a Raman spectrometer (Horiba Xplora Plus, France) spectrometer with a 532 

nm laser. The specific surface area was obtained by the Brunauer-Emmett-Teller (BET) method 

and measured by using a Micromeritics ASAP 2020 at 77 K with N2 physical adsorption. The 

photoluminescence spectra were obtained with an exciting wavelength of 320 nm, and samples 

decay curves were recorded on a FLUORMAX-4P spectrophotometer (Horiba Jobin Yvon, 

France). The UV-vis absorption was recorded using a UV-3600 UV-vis spectrophotometer. 

Photocatalytic study 

The photocatalytic CO2 reduction with H2O was conducted in Labsolar-6A system (Beijing 

Perfectlight Technology Co. Ltd). A home-made and airtight quartz container was used as the 

reactor. 8.5 mg photocatalyst was dispersed in 0.15 mL ethanol to form uniform ink and the 

photocatalyst ink was spread on the round quartz slide and dried overnight. Then the quartz 
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slide with the photocatalyst was flatly placed in the middle of the reactor. Before the 

photocatalytic test, the reactor was filled with the ultrapure CO2 by aerating CO2 for 0.5 h, and 

20 mL water was added in the bottom of reactor as the proton source. The 300 W Xenon light 

was used as the light source. The reaction system temperature was controlled at 278 K through 

recycle cooling water system. The gas products were quantified on-line by the gas 

chromatograph (Agilent GC 8860) using argon as the carrier gas. Meanwhile, the liquid 

products were quantified by nuclear magnetism resonances (JNM-ECZ600R).

Quantum efficiency calculations

In the following, we describe the QE determination at 0 = 334 nm for WO3 catalysts. The 

catalyst was irradiated by a 300 W Xe lamp. The average intensity of irradiation was determined 

to be 0.707 mW cm-2 by an PL-MV2000 spectroradiometer (Perfectlight) and the irradiation 

area was 12.56 cm2. The number of incident photons (N) is 5.37×1019 as calculated by following 

equation.1 The amount of CH4 and CH3OH molecules generated in 1 h was 0.75 μmol g-1 and 

4.02 μmol g-1 (Fig. 3b). The quantum efficiency is outlined below: 

N =
Eλ
hc

=
7.07 × 10 - 4 × 12.56 × 3600 × 334

6.626 × 10 - 34 × 3 × 1017
= 5.37 × 1019

QE =
the number of reacted electrons
the number of incident photons

× 100%

=
(8 × 0.75 × 10 - 6 + 6 × 4.02 × 10 - 6) × 6.02 × 1023 × 8 × 10 - 3

5.37 × 1019
× 100% = 0.27%

Electrochemical study

The photoelectrochemical test of the catalysts were evaluated in a typical three-electrode system 

using the electrochemistry workstation (CHI 760E).2 The catalyst ink was spread on the 

fluorine-doped tin oxide (FTO) glass as working electrodes. For a typical procedure, 10 mg 

catalyst and 100 μL Nafion 117 solution were dispersed in a mixed solution of 0.2 mL of ethanol 

and 0.7 mL ultrapure water to form the homogeneous catalyst ink. Then, 200 μL catalyst ink 

was spread on the FTO glass and dried at room temperature naturally. The Ag/AgCl electrode 

and Pt foil were used as the reference electrode and counter electrode, respectively. The 

photocurrent response tests were conducted under a 300 W Xenon light (PLs-SXE300+, Perfect 

light, China) illumination. Chronoamperometry tests were conducted at 0.5 V vs Ag/AgCl. The 

Mott-Schottky plots were tested at the frequency of 1000 Hz in 0.5 M KHCO3 electrolyte. 
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Electrochemical impedance spectroscopy (EIS) was carried out in Swagelok in the frequency 

range of 0.01 to 1×106 Hz at a scan rate of 0.1 mV s-1.

Carrier density calculations

The carrier density (Nd) can be estimated by the following equations:3

Nd =
2

eεε0
[

d( 1

C2)
d(E)

] - 1

where C is the capacitance of the space charge layer, Nd is the number of donors, e (1.602×10−19 

C) is the electron charge, ε (20 for WO3) is the dielectric constant, and ε0 (8.85×10−14 F cm−1) 

is the vacuum permittivity, and E is the applied potential.The positive slopes indicate the n-type 

nature of all WO3 samples.

In-situ FT-IR study

In-situ FT-IR was obtained using a Thermofisher Nicolet iS 50. The sample was placed in the 

reaction cell and pressed to keep the surface flat, then sealed and purged with Ar to remove 

surface impurities. After the sample reached adsorption equilibrium under CO2 atmosphere, the 

Xenon lamp was then started to illuminate the sample and recorded after a certain time interval.4 

Calculation details

The calculation was carried out by the spin-polarized periodic density functional theory 

implemented in the Vienna ab initio simulation package (VASP).5 The interaction between the 

core and valence electrons was described using the frozen-core projector augmented wave 

(PAW) approach.6 The generalized gradient approximation (GGA) with the Perdew-Burke-

Ernzerhof (PBE)7 functional was used to describe the exchange-correlation energy. The cutoff 

energy was set to 500 eV. For considering and correcting the long-range Van der Waals 

interactions, the DFT-D3 method with Becke-Jonson damping was employed in this work.8 The 

calculated lattice parameters of bulky WO3 are a = 7.42 Å, b = 7.57 Å and c = 7.75 Å, in 

agreement with the experimental values, a = 7.30 Å, b = 7.54 Å and c = 7.69 Å. Herein, we 

used a (√2 × √2)-R45° supercell9 with a thickness of 7 atomic layers containing 96 (W24O72) 

atoms to mimic the perfect surface model. The vacuum slab thickness was set up to 15 Å to 

eliminate layer to layer interactions. During the optimization, the bottom three layers atoms 

were fixed, while the top four layers atoms along with those adsorbed species were fully 
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relaxed. The geometry optimization stops until forces on atoms smaller than 0.02 eV/Å. The 

total energy converge was set to be less than 10-5 eV. For the first Brilliouin zone a 3×3×1 k-

point grid was sampled following the Gamma-centered-grid scheme.10 The Bader type charge 

was computed to analyze the charge transformation properties of the system. 

The free energy diagrams for CO2 reduction to CH3OH were calculated with reference to 

the computational hydrogen electrode method (CHE) proposed by Nørskov et al.11 The 

chemical potential of a proton-electron pair (μ[H++e−]) at U = 0 V equals to half of hydrogen 

(0.5μ[H2]) at 1 bar of H2 and 298 K. Consequently, the free energy of each species can be 

obtained from the following equation.

G =  E + ZPE -  TS

where E is the electronic energy of these species from the DFT calculation, ZPE is the zero-

point energy, T is the temperature and S the entropy, respectively. 

As stated before, the perfect WO3(001) surface (denoted as WO3 in the main text) was 

utilized to mimic the pristine metal oxide surface. Apart from the perfect model, 4 atop-like O 

atoms were removed within the perfect model to simulate the as-synthesized pit-decorated 

catalyst (denoted as WO3-x in the main text).
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Fig. S1. a) XRD pattern and b) TEM image of the WO3·H2O nanosheets.
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Fig. S2. TEM and HRTEM images of a) and b) A-5; c) and d) H-60, respectively.
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Fig. S3. XRD patterns of A-5, H-40, and H-60, respectively.
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Fig. S4. FT-IR spectra of different WO3 nanosheets.
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Fig. S5. XPS survey spectra of A-5, H-40, and H-60, respectively. 
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Fig. S6. GC spectra for gaseous products of A-5.
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Fig. S7. a) The liquid and b-c) gaseous products of H-40.
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Fig. S8. The standard curve for the detection of CO a), H2 b), O2 c) and CH3OH d) products.
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Fig. S9. Mass spectra of 13C‐labled CH4 a) and CH3OH b) products over H-40. c) Products of 

photocatalytic CO2 reduction for H-40 under different work conditions.
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Fig. S10. Yields of O2 on different WO3 nanosheets.
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Fig. S11. The CH3OH yields of A-5, H-40, and H-60 at different wavelengths, respectively.
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Fig. S12. Time-dependent photocatalytic a) CO and b) CH4 evolution curves of A-5, H-40, and 

H-60 at 5 ℃.
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Fig. S13. a) O 1s XPS spectra, b) EPR spectra, c) XRD patterns, d) W 4f XPS spectra of H-40 

before and after photocatalysis.
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Fig. S14. TEM image of H-40 after photocatalysis.
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Fig. S15. Nitrogen adsorption-desorption isotherms of different WO3 nanosheets.
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Fig. S16. a) CO2 adsorption isotherms and b) CO2-TPD spectra of A-5, H-40, and H-60, 

respectively.
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Fig. S17. Water contact angle measurements of A-5, H-40, and H-60, respectively.
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Fig. S18. In-situ FT-IR spectra of A-5, H-40, and H-60 under 25 min illumination.
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Fig. S19. CO-TPD spectra of A-5, H-40, and H-60, respectively.
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Table S1. The peak area ratio of different W valence (W6+, W5+), lattice oxygen and oxygen 

vacancy of different samples.

Table S2. Characterizations of H-40 after photocatalysis, the peak area ratio of different W 

valence (W6+, W5+), lattice oxygen and oxygen vacancy.

Table S3. Time-resolved transient PL decay of A-5, H-40, and H-60. 

Table S4. Photoelectrochemical property of various photoanodes.

Materials W6+ (%) W5+ (%) Lattice oxygen (%) Oxygen vacancy (%)

A-5 98.11 1.89 87.94 12.06

H-40  90.82 9.14 67.05 32.95

H-60 85.76 14.24 60.42 39.58

Materials W6+ (%) W5+ (%) Lattice oxygen (%) Oxygen vacancy (%)

Before reaction 90.82 9.14 67.05 32.95

After reaction 90.91 9.03 67.92 32.08

Materials τ1 (ns) τ2 (ns) τ3(ns)

A-5 0.55 3.49 18.0

H-40 0.92 4.11 21.0

H-60 0.76 3.97 20.2

Materials RCT [Ω] Nd [1019 cm−3] The top of valence band [eV]

A-5 52600 0.428 2.61

H-40 3800 3.319 1.91

H-60 2700 2.21 1.65
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