Zr-doped BaTaO$_2$N photocatalyst modified with Na-Pt cocatalyst for efficient hydrogen evolution and Z-scheme water splitting

Huihui Lia,b, Junie Jhon M. Vequizob, Takashi Hisatomib,c, Mamiko Nakabayashid, Jiadong Xiaob, Xiaoping Taob, Zhenhua Panb, Wenpeng Lie, Shanshan Chenf, Zheng Wangg, Naoya Shibatad, Akira Yamakatab, Tsuyoshi Takatab, and Kazunari Domenb,i*

a School of Materials and Energy, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China.
b Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano-shi, Nagano 380-8553, Japan.
c PRESTO, JST, 4-17-1 Wakasato, Nagano-shi, Nagano 380-8553, Japan
d Institute of Engineering Innovation, The University of Tokyo, Tokyo 113-8656, Japan.
e Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan.
f School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300-350, China
g Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
h Faculty of Natural Science and Technology, Okayama University, 3-1-1, Tsushima-naka, Kita-ku, Okayama, Japan
i Office of University Professors, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan.

*Corresponding author.
Email: domen@shinshu-u.ac.jp
Table S1. Chemical compositions of three BaTaO$_2$N samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Atomic ratio (at%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baa</td>
</tr>
<tr>
<td>BaTaO$_2$N</td>
<td>20.24</td>
</tr>
<tr>
<td>BaTaO$_2$N:Zr0.01</td>
<td>19.19</td>
</tr>
<tr>
<td>BaTaO$_2$N:Zr0.1</td>
<td>18.29</td>
</tr>
</tbody>
</table>

aMeasured by ICP-OES

bMeasured by the N-O combustion analyzer
Figure S1. Ta 4f XPS spectra of BaTaO$_2$N and BaTaO$_2$N:Zr0.01.
Figure S2. The action spectrum of Cr₂O₃ (0.9 wt% Cr)/0.23 wt% Na-0.3 wt% Pt/BaTaO₃N:Zr0.01 (100 mg) for photocatalytic water reduction in an aqueous 50 mM sodium phosphate buffer solution at pH 6 (150 mL) containing 6 mM K₄[Fe(CN)₆] under 300 W xenon lamp (420 nm < λ < 800 nm) equipped with various band-pass filters.
Figure S3. Time courses of H$_2$ evolution over Cr$_2$O$_3$ (0.9 wt% Cr)/0.23 wt% Na-0.3 wt% Pt/BaTaO$_2$N:Zr0.01 (100 mg) in an aqueous 50 mM sodium phosphate buffer solution at pH 6 (150 mL) containing 6 mM K$_4$[Fe(CN)$_6$] and O$_2$ evolution over CoO$_x$ (0.5 wt% Co)/0.2 wt% Au/BiVO$_4$ (100 mg) in the same sodium phosphate buffer solution but containing 6 mM K$_3$[Fe(CN)$_6$]. Light source: 300 W xenon lamp (420 nm < λ < 800 nm).
Figure S4. Dependence curve of AQY as a function of irradiation wavelength and diffuse reflectance spectra of the HEP and OEP. The gas evolution over ZOWS consisted of 0.9 wt% Cr$_2$O$_3$/0.23 wt% Na-0.3 wt% Pt/BaTaO$_2$N:Zr0.01 (70 mg), 0.5 wt% CoO$_x$/0.2 wt% Au/BiVO$_4$ (100 mg), and 150 mL 25 mM sodium phosphate buffer solution (pH 6.0) containing K$_4$[Fe(CN)$_6$]$_3$ (6 mM) was performed under 300 W xenon lamp (420 nm < λ < 800 nm) equipped with various band-pass filters.
Figure S5. (A) XRD pattern and (B) Ta 4f, (C) O 1s, and (D) Pt 4f XPS spectra of BaTaO$_2$N:Zr0.01 (a) before and (b) after a HER reaction in an aqueous 50 mM sodium phosphate buffer solution at pH 6 (150 mL) containing 6 mM K$_4$[Fe(CN)$_6$] under visible light irradiation.
Figure S6. XRD pattern of as-prepared BiVO$_4$.