Supporting Information

Boosting Activity of PdAg alloy nanoparticles during H₂ production from formic acid induced by CrO_x as inorganic interface modifier

Kohsuke Mori^{a,b*}, Tatsuya Fujita^a, and Hiromi Yamashita^{a,b*}

^a Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.

Tel & FAX: +81-6-6879-7460, +81-6-6879-7457

E-mail: mori@mat.eng.osaka-u.ac.jp, yamashita@mat.eng.osaka-u.ac.jp

^b Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.

Table S1. The content of C, H, N wt% over amine-MSC estimated from C.H.N elemental analysis.

element	wt%
Carbon	97.0
Hydrogen	0.0
Nitrogen	1.7

Figure S1. (A) O 1S XPS spectra of MSC and MSC with acid treatment, and (B) the weight loss associated to the amine functionality of amine-MSC observed from TG analysis

Figure S2. N_2 adsorption-desorption isotherms of (a) MSC, (b) amine-MSC, and (c) PdAgCr/amine-MSC.

Table S2. The BET surface area	and pore volume of	each sample.
--------------------------------	--------------------	--------------

	Surface area (S_{BET}) [$m^2 g^{-1}$]	Pore volume (V_p) [cm ³ g ⁻¹]
MSC	320	0.64
amine-MSC	153	0.39
PdAgCr/ amine-MSC	104	0.24

Figure S3. STEM image and size distribution of PdAg/amine-MSC.

Figure S4. TEM image and size distribution of Pd/amine-MSC.

Figure S5. Inverse-FT of k^3 -weighted EXAFS (black line) and Curve-fitting results (red dot) for PdAgCr/amine-MSC at (a) Pd K-edge, (b) Ag K-edge, and Cr K-edge.

Figure S6. Effect of formic acid concentration in the H₂ production from formic acid.

Figure S7. TEM image and size distribution diagram of PdAg/Cr₂O₃.

Figure S8. (A) Pd 3d and Ag 3d XPS spectra of PdAgCr/amine-MSC and PdAg/Cr₂O₃.

Figure S9. Durability test in the dehydrogenation from FA using PdAgCr/amine-MSC.

Figure S10. TEM image of the recovered PdAgCr/amine-MSC after the dehydrogenation from FA.

Figure S11. (A) Pd K-edge XANES and (B) FT-EXAFS spectra of (a) recovered PdAgCr/amine-MSC, (b) fresh PdAg/amine-MSC, (C) Ag K-edge XANES and (D) FT-EXAFS spectra of (a) (a) recovered PdAgCr/amine-MSC, (b) fresh PdAg/amine-MSC, and (E) Cr K-edge XANES and (F) FT-EXAFS spectra of (a) recovered PdAgCr/amine-MSC, (b) fresh PdAg/amine-MSC.

Figure S12. Comparison of activity during HD exchange reaction using various amine-MSC supported catalysts.