Supporting Information for:

Stoichiometry modulates the optoelectronic functionality of Zinc Phosphide (Zn_{3-x}P_{2+x})

Elias Z. Stutz,¹ Santhanu P. Ramanandan,¹ Mischa Flor,¹ Rajrupa Paul,¹ Mahdi Zamani,¹ Simon Escobar Steinvall,¹ Diego Armando Sandoval Salaiza,¹ Claudia Xifra,² Maria Chiara Spadaro,² Jean-Baptiste Leran,¹ Alexander P. Litvinchuk,³ Jordi Arbiol,^{2,4} Anna Fontcuberta i Morral,^{1,5} Mirjana Dimitrievska^{1*}

1 - Laboratory of Semiconductor Materials, Institute of Materials, Faculty of Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.

2 – Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Catalonia, Spain

3 - Texas Center for Superconductivity and Department of Physics, University of Houston, Houston, Texas 77204-5002, United States of America

4 - ICREA, Pg. Lluís Companys 23, Barcelona, Catalonia, Spain.

5 - Institute of Physics, Faculty of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.

* e-mail: mirjana.dimitrievska@epfl.ch

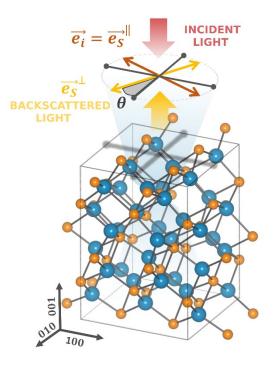
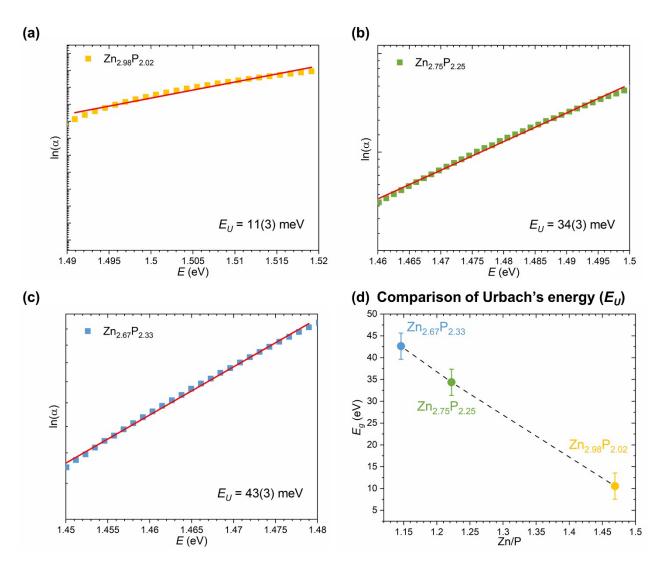



Figure S1. Schematic representation of the Raman scattering polarization measurements. Raman measurements are performed on the (001) basal plane with incident laser light (wide red arrow) projected along the *-z*-axis ([001] direction). The incident light polarization and the output polarization in perpendicular configuration are represented by the thin red and yellow arrows, respectively. The black arrows indicate the *x* and *y* axis of the crystal corresponding to [100] and [010] directions, respectively. The polarization angle $\theta = \pi/4$ was used for all three monocrystalline zinc phosphide thin films.

Figure S2. Urbach energy calculation from absorption measurements for samples with various compositions: (a) $Zn_{2.98}P_{2.02}$ (Zn/P = 1.47), (b) $Zn_{2.75}P_{2.25}$ (Zn/P = 1.22) and (c) $Zn_{2.67}P_{2.33}$ (Zn/P = 1.15). (d) Comparison of Urbach energy with composition.