Supporting Information

Joint Electric and Magnetic Beam Deflection Experiments and Quantum Chemical Studies of MSn_{12} Clusters ($\mathrm{M}=\mathrm{Al}, \mathrm{Ga}, \mathrm{Sn}$): On the Interplay of Geometric Structure and Magnetic Properties in Nanoalloys

Filip Rivic, ${ }^{* \ddagger}$ Andreas Lehr, ${ }^{\ddagger}$ Thomas M. Fuchs, and Rolf Schäfer
Technical University of Darmstadt, Eduard-Zintl-Institut, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany. \ddagger These authors contributed equally to this work.

1. Computational Details

1.1 Genetic Algorithm

The experimental work is complemented with a genetic algorithm-based global search of the coordination space, followed by a local structural reoptimization and frequency analyses on varying levels of theory. The global optimization was conducted by the German Improved Genetic Algorithm (GIGA) ${ }^{1}$, which is the newest iteration of the Birmingham Cluster Genetic Algorithm (BCGA). ${ }^{2-4}$ The calculations for MSn_{12} ($\mathrm{M}=\mathrm{Al}, \mathrm{Ga}$, In) were performed with plane-wave density functional theory (DFT) using Quantum Espresso v6.4.1. ${ }^{5,6}$ The PBE exchange-correlation (xc) functional ${ }^{7,8}$ was applied within the framework of spin-restricted DFT. The ultrasoft RRKJ pseudopotentials ${ }^{9,10}$ (10 core electrons for $\mathrm{Al}, 18$ for $\mathrm{Ga}, 36$ for In and 36 for Sn) with a plane-wave kinetic energy cutoff of 400 eV were employed. The box size of the unit cell is determined dynamically such that no duplicate clusters are closer than $16 \AA$ and self-interaction can be neglected. Spin polarization was implemented and a small Methfessel-Paxton smearing ${ }^{11}$ as well as nonlinear core corrections ${ }^{12}$ were applied. The geometry optimizations during the GIGA iterations were performed with an electronic self-consistency criterion of $10^{-6} \mathrm{eV}$. Total energy and force convergence threshold values were set to $10^{-4} \mathrm{eV}$ and $10^{-3} \mathrm{eV} \AA^{-1}$, respectively.

1.2 Reoptimization and Dielectric Properties

All identified structural candidates within 4 eV relative to the lowest-energy structure were considered for local reoptimization using spin-unrestricted Gaussian orbital-based DFT with tight optimization criteria and high-density numerical grids. These calculations were carried out with Gaussian16 ${ }^{13}$ and Orca v5.0.2 ${ }^{14-16}$ employing the PBE0/def2-TZVPP ${ }^{17-19}$ level of theory considering doublet, quartet and sextet spin configurations with the former on being the energetically most favorable throughout. Scalar relativistic corrections were effectively treated by the use of this pseudopotential-supported basis set. The choice of the xc functional/basis set combination was justified by extensive previous studies on bare tin ${ }^{20-23}$, bare lead ${ }^{24,25}$ and doped tin clusters. ${ }^{26-29}$ Additionally, high symmetry configurations ($I_{h}, T_{h}, O_{h}, D_{6 h}, D_{2 h}, D_{5 d}$ and $D_{3 d}$) built from the perfect icosahedral symmetry were reoptimized symmetry-unconstrained as well employing the xc functionals PBE0 ${ }^{17}$, B3P86 ${ }^{30}$, B3LYP ${ }^{31}$, HSE $06^{32,33}$, LC- ω PBEh 34,35, TPSSh ${ }^{36-38}$, M06 ${ }^{39}$ and B2PLYP ${ }^{40,41}$ with the goal to not miss out a high-symmetry configuration. Those isomers below 0.3 eV relative to the global minimum (GM) were chosen for the calculation of electric dipole moments, unrestricted spin densities and vibrational frequencies. CCSD (T)/cc-pVTZ-PP ${ }^{42,43}$ single-point energies on top of the PBE0/def2-TZVPP optimized geometries were computed using the domain-based local pair natural orbital (DLPNO) acceleration approach ${ }^{44-47}$ implemented in Orca. Furthermore, the CCSD(T) energies were computed using the „NormalPNO" criterion and extrapolated to the complete basis set limit using the two-point extrapolation for the cc-pVTZ-PP and corresponding auxiliary basis sets. ${ }^{48}$

1.3 Magnetic Properties

Magnetic properties comprising the g-matrix and the hyperfine coupling constant were computed with the EPR/NMR module of Orca. The scalar relativistically-parametrized second-order Douglas-Kroll-Hess (DKH2) ${ }^{49}$ and zerothorder regular approximation (ZORA) Hamiltonians ${ }^{50}$ were used in combination with the accordingly recontracted basis sets DKH- and ZORA-def2-TZVPP ${ }^{51}$ at the PBE0 level of theory. For the elements In and Sn the segmented all-electron relativistically contracted (SARC) versions together with their decontracted auxiliary basis sets (SARC/J) were implemented. ${ }^{52}$ To efficiently speed up the calculations, the resolution of identity approximation for the Coulomb integrals and the numerical integration for the Hartree-Fock exchange (RIJCOSX) ${ }^{53}$ was made use of with the DFT numerical interation grid precision set to „DefGrid2". Picture-change effects were implemented throughout, for DKH up to its second-order transformation of the Hamiltonian. ${ }^{49}$ Regarding the DKH method, the magnetic field was implemented in the free-particle Foldy-Wouthuysen transformation only for the calculation of the g-matrices. ${ }^{49}$ All contributions to the model potentials are considered in their default settings. Furthermore, the finite-nucleus model was applied. Before invoking the EPR/NMR module it was assured that geometry optimizations for all structural isomers at the relativistic level yield insignificant differences to the nonrelativistic PBE0/def2-TZVPP results. Regarding the calculation of the g-matrices and hyperfine coupling constants, the spin-orbit coupling operators are treated by the spin-orbit mean field (SOMF) approach, specifically the RI-SOMF(1X) variant. ${ }^{54}$ The Pople solver was used for the calculation of the coupled-pair self-consistent field (CP-SCF) equations. ${ }^{50}$ Again to speed up the computation, the gauge origin was chosen to be the central doping atom fixed at the cartesian center $(0,0,0)$ which was demonstated to exactly reproduce the results obtained with gauge-dependent atomic orbitals (GIAOs) ${ }^{54,55}$ for the T_{h} and $D_{3 d}$ isomers. The g-matrices were calculated both at the DKH-PBE0/(SARC-)DKH-def2-TZVPP and ZORA-PBE0/(SARC-)ZORA-def2-TZVPP level of theory, yielding very similar results with differences of 0.01 in the g-value, whereas hyperfine coupling constants were only obtained using the ZORA method.

2. Cartesian Coordinates and AlSn_{12} Structural Isomers

In the manuscript only structural isomers below 0.3 eV relative to the T_{h} GM are shown. Here, an extended list of isomers up to 1.0 eV are presented exemplary for AlSn_{12} in Fig. S1. Additionally to the GA routine and the reoptimization based on high-symmetry configurations described in Sec. 1.1, structural candidates from Sn_{13} and $\mathrm{Sn}_{13}^{+}{ }^{23}$ as well as MPb_{12} and MPb_{12}^{+}geometries with $\mathrm{M}=\mathrm{B}, \mathrm{Al}, \mathrm{Ga}$, $\mathrm{In}, \mathrm{Tl}^{56-58}$ were considered for reoptimization. The cartesian coordinates of all structural isomers for MSn_{12} with $\mathrm{M}=\mathrm{Al}$, Ga , In treated in this study can be found in Tab. S1.

Figure S1. AlSn_{12} structural isomers with an energy difference ΔE below 1 eV relative to the T_{h} GM at the PBE0/def2TZVPP level of theory. The point group symmetries and electric dipole moments μ_{el} are shown.

Table S1. Summary of cartesian coordinates of all structural isomers below 0.3 eV relative to the $\mathrm{MSn}_{12} \mathrm{GM}$ with $\mathrm{M}=\mathrm{Al}$, Ga , In (top and center) as well as those structural isomers below 1.0 eV relative to the $\mathrm{AlSn}_{12} \mathrm{GM}$ (bottom). All shown structures were reoptimized at the PBE0/def2-TZVPP level of theory.

	$\begin{gathered} \mathbf{A l S n}_{12} \\ \text { Iso1 }\left(T_{h}\right) \end{gathered}$			$\mathbf{G a S n}_{12}$ Iso1 $\left(T_{h}\right)$			$\mathbf{I n S n}_{12}$ Iso1 $\left(T_{h}\right)$		
	x	y	z	x	y	z	x	y	z
Al/Ga/In	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Sn	-0.371721	-0.127860	2.986334	0.035280	0.317920	2.996312	0.149452	-0.483574	3.019058
Sn	0.371832	0.127658	-2.986 453	-0.035 162	-0.317978	-2.996235	-0.149 111	0.483503	-3.019 129
Sn	2.853962	-0.047251	-0.962 796	-2.687227	-0.617556	-1.215 537	1.544226	2.435560	-1.027143
Sn	-2.853868	0.047062	0.962674	2.687340	0.617492	1.215593	-1.544051	-2.435 615	1.027089
Sn	-2.163160	-1.304 409	-1.641117	1.985424	1.686305	-1.514933	-0.243 406	-2.512916	-1.731332
Sn	2.163284	1.304210	1.641005	-1.985316	-1.686373	1.515002	0.243597	2.512895	1.731281
Sn	1.058402	2.608111	-1.072817	-0.359 700	-2.816276	-1.009648	-1.714637	2.380233	-0.875027
Sn	-1.058282	-2.608310	1.072652	0.359815	2.816206	1.009741	1.714815	-2.380 260	0.874927
Sn	0.823706	-2.466 539	-1.520385	-1.179 452	2.167361	-1.729 447	2.412152	-0.617891	-1.780803
Sn	-0.823607	2.466384	1.520255	1.179565	-2.167404	1.729541	-2.411953	0.617841	1.780842
Sn	1.840399	-1.881966	1.464521	-2.340071	1.485092	1.182687	2.742165	0.463578	1.279568
Sn	-1.840297	1.881767	-1.464707	2.340174	-1.485168	-1.182597	-2.741990	-0.463 601	-1.279682
		AlSn_{12}			GaSn_{12}			InSn ${ }_{12}$	
		Iso2 ($D_{3 d}$)			Iso2 ($D_{3 d}$)			Iso2 ($D_{3 d}$)	
	x	y	z	x	y	z	x	y	z
Al/Ga/In	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Sn	0.000000	1.913274	2.333081	-0.645 307	1.586361	-2.380307	1.340894	1.434346	-2.354335
Sn	0.000000	-1.913274	-2.333081	0.645309	-1.586364	2.380304	-1.340 909	-1.434354	2.354336
Sn	0.000000	-2.934136	0.671221	-0.645343	-2.854596	-0.183641	-2.037399	-2.178534	-0.689087
Sn	0.000000	2.934136	-0.671221	0.645344	2.854597	0.183638	2.037391	2.178531	0.689087
Sn	-1.656944	0.956637	-2.333081	0.645297	-1.268274	-2.563 955	0.571196	-1.878584	-2.354327
Sn	1.656944	-0.956 637	2.333081	-0.645 294	1.268274	2.563954	-0.571 204	1.878575	2.354332
Sn	2.541036	-1.467068	-0.671221	-2.567354	-0.974354	1.462041	-2.905 244	0.675060	0.689656
Sn	-2.541036	1.467068	0.671221	2.567357	0.974354	-1.462043	2.905236	-0.675061	-0.689655
Sn	-2.541036	-1.467068	-0.671 221	-2.567405	1.753321	0.112815	-0.868 142	2.853646	-0.689 089
Sn	2.541036	1.467068	0.671221	2.567409	-1.753320	-0.112817	0.868134	-2.853 649	0.689093
Sn	-1.656944	-0.956 637	2.333081	-2.567347	-0.778968	-1.574853	-1.913040	0.444442	-2.353 936
Sn	1.656944	0.956637	-2.333081	2.567347	0.778969	1.574852	1.913035	-0.444445	2.353939
	AlSn_{12}								
	Iso3 (C_{1})			$\text { Iso4 }\left(C_{1}\right)$			$\text { Iso5 }\left(C_{2 v}\right)$		
	x	y	z	x	y	z	x	y	z
Al	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
Sn	2.364411	1.480973	1.298970	-2.501996	0.65955	1.556177	-0.000 454	-1.685060	-2.443722
Sn	4.609656	-0.145 954	0.586441	2.869126	-1.001287	-1.561343	-2.356 695	0.095505	1.623048
Sn	2.184079	-1.828 763	1.266533	3.902598	1.278437	0.116724	-0.000 469	-1.684777	2.443461
Sn	0.154604	-0.215874	3.021980	-2.141651	-1.920 413	-0.045 456	1.610948	-2.652 147	-0.000 242
Sn	2.499916	-0.140625	-1.450419	0.845398	-2.875267	-0.106 749	4.290697	-1.385225	-0.000087
Sn	-0.477322	2.513400	1.700213	-0.803848	2.853557	0.027301	-1.507494	2.452416	-0.000395
Sn	-1.177309	-2.507381	1.358830	1.474469	1.813189	-1.620967	2.356235	0.095403	-1.623388
Sn	1.010325	2.498294	-1.215724	-0.146 174	-1.269183	2.480707	-1.613064	-2.653 208	-0.000012
Sn	0.535616	-2.526 749	-1.272715	2.853225	-1.137773	1.521496	-2.356 576	0.095312	-1.623330
Sn	-2.620 754	0.195244	1.518953	-2.568781	0.753638	-1.426534	1.506909	2.452857	-0.000355
Sn	-1.942950	1.864842	-1.021 088	1.347857	1.678805	1.813982	2.356487	0.095736	1.622876
Sn	-2.264150	-1.215 126	-1.217070	-0.122627	-1.028654	-2.560907	-4.292054	-1.383381	-0.000244

AlSn_{12}
Iso6 (C_{1})

x	y	z	
Al	0.000000	0.000000	0.000000
Sn	0.963476	-1.269025	-2.619271
Sn	0.016634	1.629545	-2.685722
Sn	2.988724	1.247124	-2.630994
Sn	2.176115	-2.041177	0.314158
Sn	-0.661465	-2.716274	-0.577338
Sn	1.477112	2.454705	-0.116452
Sn	-2.224125	-0.539405	-2.447931
Sn	3.881558	-1.624142	-2.103033
Sn	3.981168	0.483831	0.117571
Sn	-2.030367	1.928328	-0.423612
Sn	1.839080	0.398002	2.109905
Sn	-2.712984	-0.802196	0.485184

3. MO Diagrams and g-Factors

From the MO diagrams in Fig. 5 of the main manuscript shown for different X values, the relation between the calculated g-factors and the energy difference between the SOMO and LUMO $(+1)$ can be further investigated. As long as the energy difference does not get too small, leading to a breakdown of the SOS expression in Eq. 4 in the manuscript, the predicted linear dependence with the inverse of the energy difference is observed computationally with a vanishingly small offset. From this, the orbital-Zeeman-spin-orbit coupling matrix elements are estimated to be of the order 1.52 eV as illustrated in Fig. S2.

Figure S2. The $\Delta g_{\text {iso }}$-shifts computed for different X values as a function of the inverse SOMO-LUMO gap of AlSn ${ }_{12}$ (similar to InSn_{12}) at the DKH-PBE0/(SARC-)DKH-def2-TZVPP level of theory. The data points for $X>0.25$ are fitted corresponding to their linear dependence, whereas the data points in round brackets indicate the breakdown of Eq. 4 in the main manuscript. The results for GaSn_{12} are conceptually comparable to the point where the energetic order of the MOs switches close to I_{h} symmetry $(X=0.00)$.

References

[1] M. Jäger, R. Schäfer and R. L. Johnston, Nanoscale, 2019, 11, 9042-9052.
[2] R. L. Johnston, Dalton Trans., 2003, 3, 4193-4207.
[3] S. Heiles, A. J. Logsdail, R. Schäfer and R. L. Johnston, Nanoscale, 2012, 4, 1109-1115.
[4] A. Shayeghi, D. Götz, J. B. Davis, R. Schäfer and R. L. Johnston, Phys. Chem. Chem. Phys., 2015, 17, 21042112.
[5] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello,
L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari and R. M. Wentzcovitch, J. Phys. Condens. Matter, 2009, 21, 395502.
[6] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H.-V. Nguyen, A. Otero-de-la Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu and S. Baroni, J. Phys. Condens. Matter, 2017, 29, 465901.
[7] J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.
[8] J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1997, 78, 1396-1396.
[9] D. Vanderbilt, Phys. Rev. B, 1985, 32, 8412-8415.
[10] A. M. Rappe, K. M. Rabe, E. Kaxiras and J. D. Joannopoulos, Phys. Rev. B, 1990, 41, 1227-1230.
[11] M. Methfessel and A. T. Paxton, Phys. Rev. B, 1989, 40, 3616-3621.
[12] S. Louie, S. Froyen and L. Cohen, Phys. Rev. B, 1982, 26, 1738-1742.
[13] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian 16, Revision C.01, 2016.
[14] F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2012, 2, 73-78.
[15] F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2018, 8, 1-6.
[16] F. Neese, F. Wennmohs, U. Becker and C. Riplinger, J. Chem. Phys., 2020, 152, 224108.
[17] J. P. Perdew, M. Ernzerhof and K. Burke, J. Chem. Phys., 1996, 105, 9982-9985.
[18] B. Metz, H. Stoll and M. Dolg, J. Chem. Phys., 2000, 113, 2563-2569.
[19] F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297-3305.
[20] S. Schäfer, B. Assadollahzadeh, M. Mehring, P. Schwerdtfeger and R. Schäfer, J. Phys. Chem. A, 2008, 112, 12312-12319.
[21] B. Assadollahzadeh, S. Schäfer and P. Schwerdtfeger, J. Comput. Chem., 2010, 31, 929-937.
[22] A. Lehr, M. Jäger, M. Gleditzsch, F. Rivic and R. Schäfer, J. Phys. Chem. Lett., 2020, 11, 7827-7831.
[23] A. Lehr, F. Rivic, M. Jäger, M. Gleditzsch and R. Schäfer, Phys. Chem. Chem. Phys., 2022, 24, 11616-11635.
[24] D. A. Götz, A. Shayeghi, R. L. Johnston, P. Schwerdtfeger and R. Schäfer, J. Chem. Phys., 2014, 140, 164313.
[25] D. A. Götz, A. Shayeghi, R. L. Johnston, P. Schwerdtfeger and R. Schäfer, Nanoscale, 2016, 8, 11153-11160.
[26] S. Heiles, R. L. Johnston and R. Schäfer, J. Phys. Chem. A, 2012, 116, 7756-7764.
[27] M. Gleditzsch, L. F. Pašteka, D. A. Götz, A. Shayeghi, R. L. Johnston and R. Schäfer, Nanoscale, 2019, 11, 12878-12888.
[28] M. Gleditzsch, T. M. Fuchs and R. Schäfer, J. Phys. Chem. A, 2019, 123, 1434-1444.
[29] M. Gleditzsch, M. Jäger, L. F. Pašteka, A. Shayeghi and R. Schäfer, Phys. Chem. Chem. Phys., 2019, 21, 24478-24488.
[30] J. P. Perdew, Phys. Rev. B, 1986, 33, 8822-8824.
[31] A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5656.
[32] A. V. Krukau, O. A. Vydrov, A. F. Izmaylov and G. E. Scuseria, J. Chem. Phys., 2006, 125, 224106.
[33] T. M. Henderson, A. F. Izmaylov, G. Scalmani and G. E. Scuseria, J. Chem. Phys., 2009, 131, 044108.
[34] A. F. Izmaylov, G. E. Scuseria and M. J. Frisch, J. Chem. Phys., 2006, 125, 104103.
[35] M. A. Rohrdanz, K. M. Martins and J. M. Herbert, J. Chem. Phys., 2009, 130, 054112.
[36] J. Tao, J. P. Perdew, V. N. Staroverov and G. E. Scuseria, Phys. Rev. Lett., 2003, 91, 146401.
[37] V. N. Staroverov, G. E. Scuseria, J. Tao and J. P. Perdew, J. Chem. Phys., 2003, 119, 12129-12137.
[38] V. N. Staroverov, G. E. Scuseria, J. Tao and J. P. Perdew, J. Chem. Phys., 2004, 121, 11507.
[39] Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215-241.
[40] S. Grimme, J. Chem. Phys., 2006, 124, 034108.
[41] F. Neese, T. Schwabe and S. Grimme, J. Chem. Phys., 2007, 126, 124115.
[42] D. E. Woon and T. H. Dunning, J. Chem. Phys., 1993, 98, 1358-1371.
[43] K. A. Peterson, D. Figgen, E. Goll, H. Stoll and M. Dolg, J. Chem. Phys., 2003, 119, 11113-11123.
[44] C. Riplinger, B. Sandhoefer, A. Hansen and F. Neese, J. Chem. Phys., 2013, 139, 134101.
[45] D. G. Liakos, M. Sparta, M. K. Kesharwani, J. M. Martin and F. Neese, J. Chem. Theory Comput., 2015, 11, 224108.
[46] D. G. Liakos and F. Neese, J. Chem. Theory Comput., 2015, 11, 4054-4063.
[47] C. Riplinger, P. Pinski, U. Becker, E. F. Valeev and F. Neese, J. Chem. Phys., 2016, 144, 024109.
[48] D. G. Truhlar, Chem. Phys. Lett., 1998, 294, 45-48.
[49] B. Sandhoefer and F. Neese, J. Chem. Phys., 2012, 137, 094102.
[50] F. Neese, J. Chem. Phys., 2001, 115, 11080-11096.
[51] D. A. Pantazis, X. Y. Chen, C. R. Landis and F. Neese, J. Chem. Theory Comput., 2008, 4, 908-919.
[52] J. D. Rolfes, F. Neese and D. A. Pantazis, J. Comput. Chem., 2020, 41, 1842-1849.
[53] F. Weigend, Phys. Chem. Chem. Phys., 2006, 8, 1057-1065.
[54] F. Neese, J. Chem. Phys., 2005, 122, 034107.
[55] J. Gauss, M. Kállay and F. Neese, J. Phys. Chem. A, 2009, 113, 11541-11549.
[56] S. Neukermans, E. Janssens, Z. F. Chen, R. E. Silverans, P. V. Schleyer and P. Lievens, Phys. Rev. Lett., 2004, 92, 10-13.
[57] D. L. Chen, W. Q. Tian, W. C. Lu and C. C. Sun, J. Chem. Phys., 2006, 124, 154313.
[58] C. Rajesh and C. Majumder, Chem. Phys. Lett., 2006, 430, 101-107.

