Supporting Information

A Conformational Equilibrium in the Nitrogenase MoFe Protein with an α-V70I Amino Acid Substitution Illuminates the Mechanism of H₂ Formation

Dmitriy A. Lukoyanov¹, Zhi-Yong Yang², Krista Shisler³, John W. Peters⁴, Simone Raugei⁵, Dennis R. Dean⁶, Lance C. Seefeldt², and Brian M. Hoffman¹

¹Department of Chemistry and Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA.

²Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA.

³Institute of Biological Sciences, Washington State University, Pullman, Washington, 99164, USA. ⁴Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, 73019, USA. ⁵Physcial and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland,

Washington, 99352, USA.

⁶Biochemistry Department, Virginia Tech, Blacksburg, Virginia, 24061, USA.

Table S1. Detailed information of EPR and ENDOR samples with different MoFe protein variants studied in the present work.^{*a*}

E _n state/Intermediate	MoFe protein concentration (µM)	Fe protein concentration (µM)	Substrate	pH/pD	Data presented in
WT E ₀	50		H^{+} (1 atm Ar)	7.0	Figure 4 and 6
α-V70I E ₀	50		$H^+(1 \text{ atm Ar})$	7.0	Figure 4 and 6
⁹⁵ Mo-WT E ₀	150		$H^+(1 \text{ atm Ar})$	7.3	Figure 4
⁹⁵ Mo-α-V70I E ₀	150		H^+ (1 atm Ar)	7.3	Figure 4
α -V70I E ₀ and E ₂ (RFQ) ^b	80	800	H ⁺ (1 atm Ar)	7.4	Figure 5
WT E_0^c	50	0.5	H^{+} (1 atm Ar)	7.0	Figure 6
α -V70I E ₀ ^c	50	0.5	H^+ (1 atm Ar)	7.0	Figure 6
α -V70I E ₄ (4H) and E ₄ (2H)*	150	120	D ⁺ (1 atm Ar)	7.1	Figure 10
α-V70I E ₄	60	40	H^+/D^+ (1 atm Ar/D ₂ /H ₂)	7.3	Figure S1

^{*a*} Unless otherwise stated, all samples were prepared in a *ca.* 200 mM MOPS buffer, pH as specified in the table, with a MgATP regeneration system having final concentrations of *ca.* 13-15 mM ATP, 15-20 mM MgCl₂, ca. 20-25 mM phosphocreatine, 2.0 mg/mL BSA, 0.3 mg/mL creatine phosphokinase and ca. 40 mM sodium dithionite. For turnover samples with the presence of Fe protein, all reaction mixtures were incubated at room temperature for about 20-25 sec followed by rapid freezing in a pentane slurry and stored in liquid nitrogen before measurement. ^{*b*} The rapid freeze quenching samples were prepared as described earlier.^{1,2 c} The low flux ([MoFeP]:[FeP] = 100:1) turnover samples were made after being incubated at room temperature for different times as indicated in Figure 6 before rapid freezing in a pentane slurry and stored in liquid nitrogen before measurement.

Evidence for the presence of E₄(2H)* During Ar Turnover of α-V70I MoFe Protein

To support the identification of the $g_1 = 2.11$ S = 1/2 EPR signal observed for α -V70I under Ar turnover (**Fig 10**) with the E₄(2H)* state we used as a probe its oxidative-addition reaction with D₂, to form the E₄(2H2D) intermediate with two bridging deuterides. We had shown that the activated E₄(2H)* state generated photochemically oxidatively adds H₂/D₂ to form E₄(4H)/E₄(2H2D), **Scheme S1**.³ In contrast, it has long been established that the only state that participates in the LT N₂-reduction catalytic cycle for WT enzyme of **Fig 1**, and that is capable of reacting with H₂/D₂ is the E₄(2N2H) state, which only forms during turnover under N₂, and which can undergo oxidative addition of H₂/D₂ coupled with loss of N₂ to generate E₄(4H)/E₄(2H2D). Thus, if the S = $\frac{1}{2}$ EPR signal observed

in low levels during Ar turnover of α -V70I is indeed E₄(2H)*, then when α -V70I is turned over under D₂ a small steady-state population of the dideuteride E₄(2H⁺,2D⁻) intermediate should develop along with the majority of E₄(4H), **Scheme S1**.

We previously showed that the apparent EPR linewidth of the $E_4(4H)$ isotopologue is actually generated by hyperfine coupling to the bridging hydrides, and the apparent linewidth of $E_4(4D)$ dideuteride state is correspondingly decreased.⁴ The hyperfine-broadening effect for $E_4(4H)$ EPR is particularly well exhibited in the shape of the g_3 feature, which reveals resolved splitting arising from hyperfine couplings to two hydrides. Thus, if the observed $g_1 = 2.11$ S = $\frac{1}{2}$ signal indeed is associated with $E_4(2H)^*$, the E_4 state accumulated during turnover in H_2O under D_2 should exhibit a decrease in linewidth caused by the presence of the dideuteride isotopologue $E_4(2H^+, 2D^-)$ and in the opposite case of turnover in D_2O under H_2 the observed EPR linewidth of E_4 state should slightly increase due to formation of the dihydride state $E_4(2D^+, 2H^-)$. As shown in **Figure S1**, the EPR signal of E_4 trapped during

Figure S1. Expanded g_1 and g_3 portions of X-band EPR spectra of the E4(4H) level intermediates showing effect of α -V70I turnover conditions (H₂O vs D₂O; Ar vs D₂ and H₂ atmosphere) on signal linewidth of trapped E₄ state. *EPR conditions*: temperature, 12 K; microwave frequency, ~9.36 GHz; microwave power, 10 mW; modulation amplitude, 3 G; time constant, 160 ms; field sweep speed, 5 G/s.

 α -V70I turnover in H₂O under D₂ indeed is narrower than that trapped under Ar, while E₄ trapped in D₂O under H₂ exhibits hyperfine broadening, in particular a splitting of g₃ feature caused by hydrides of the E₄(2D⁺,2H⁻) isotopologue formed during turnover. Thus it can be concluded that the newly observed g₁ = 2.11 S = ½ signal is truly associated with E₄(2H)*.

With this identification, we confirm that the $E_4(2H)^*$ intermediate accumulates in low occupancy during turnover of α -V70I under Ar. Indeed, this has led us to recognize that the signal was present in earlier α -V70I turnover spectra.^{5,6} As noted above, WT nitrogenase does not react with H₂/D₂ unless N₂ is present, establishing that the $E_4(2H)^*$ state, which has that ability, does not occur during turnover of the WT enzyme: N₂ binding/reduction and hydride *re* in WT enzyme are fully concerted, **Fig 1**.

References

(1) Kim, S. H.; Perera, R.; Hager, L. P.; Dawson, J. H.; Hoffman, B. M. Rapid Freeze-Quench ENDOR Study of Chloroperoxidase Compound I: The Site of the Radical. *J. Am. Chem. Soc.* **2006**, *128*, 5598-5599.

(2) Danyal, K.; Shaw, S.; Page, T. R.; Duval, S.; Horitani, M.; Marts, A. R.; Lukoyanov, D.; Dean, D. R.; Raugei, S.; Hoffman, B. M.; Seefeldt, L. C.; Antony, E. Negative Cooperativity in the Nitrogenase Fe Protein Electron Delivery Cycle. *PNAS* **2016**, *113*, E5783-E5791.

(3) Lukoyanov, D.; Khadka, N.; Yang, Z. Y.; Dean, D. R.; Seefeldt, L. C.; Hoffman, B. M. Reversible Photoinduced Reductive Elimination of H_2 from the Nitrogenase Dihydride State, the $E_4(4H)$ Janus Intermediate. *J. Am. Chem. Soc.* **2016**, *138*, 1320-1327.

(4) Lukoyanov, D.; Khadka, N.; Yang, Z. Y.; Dean, D. R.; Seefeldt, L. C.; Hoffman, B. M. Reductive Elimination of H₂ Activates Nitrogenase to Reduce the N \equiv N Triple Bond: Characterization of the E₄(4H) Janus Intermediate in Wild-Type Enzyme. *J. Am. Chem. Soc.* **2016**, *138*, 10674-10683.

(5) Igarashi, R. Y.; Laryukhin, M.; Dos Santos, P. C.; Lee, H. I.; Dean, D. R.; Seefeldt, L. C.; Hoffman, B. M. Trapping H⁻ Bound to the Nitrogenase FeMo-Cofactor Active Site During H₂ Evolution: Characterization by ENDOR Spectroscopy. *J. Am. Chem. Soc.* **2005**, *127*, 6231-6241.

(6) Lukoyanov, D.; Barney, B. M.; Dean, D. R.; Seefeldt, L. C.; Hoffman, B. M. Connecting Nitrogenase Intermediates with the Kinetic Scheme for N_2 Reduction by a Relaxation Protocol and Identification of the N_2 Binding State. *PNAS* **2007**, *104*, 1451-1455.