Supplementary Material

Table S1: A survey of the anti-ischemia mechanistic studies reported in the literature for the different plant species and their derived bioactives.

No.	Compound/ Chemical class	Source	Mechanism	Model	Ref
I.	Bioactives for manag	ement of cerebral i	schemia		
1	Totarol (Terpenoid)	Podocarpus totara, F: podocarpaceae	Neuroprotective in cerebral IRI <i>via</i> Activation of Akt/HO-1 pathway.	OGD and tMCAO	[1]
2	Taraxasterol (Terpenoid)	<i>Taraxacum</i> officinale, F: Asteraceae	Neuroprotective in hippocampal neurons via Activation of Nrf2 signalling pathway (ROS↓; MDA↓).	OGD/R	[2]
4	Resveratrol (Terpenoid)	Grape Vitis vinifera, F: Vitaceae	Ref to text.	MCAO	[19]
5	Celastrol (Terpenoid)	Tripterygium wilfordii	Protective effect against cerebral IRI through downregulation of the expression of p-JNK, p-c-Jun and NF-κB.	tMCAO/O GD	[16]
6	Asiatic acid (Terpenoid)	<i>Centella</i> <i>asiatica</i> , F: Apiaceae	Neuroptotective against focal cerebral IRI by suppressing mitochondrial damage and MMP-9 activation.	-pMCAO	[34]
7	11-Keto-β-boswellic acid terpenoid	<i>Boswellia</i> <i>serrata,</i> F: Burseraceae	Neuroprotection and anti- inflammatory against cerebral IRI via regulation of the Nrf2/HO-1 pathway.	MCAO	[112]
8	Acetyl-11-Keto-β- boswellic acid (Terpenoid)	Boswellia serrata, F: Burseraceae	AKBA-loaded o- carboxymethyl chitosan nanoparticles (AKBA-NP) neuroprotection, antioxidant and anti-inflammatory against cerebral IRI via increasing nuclear erythroid 2-related factor 2 and heme oxygenase-1 expression, and decreasing nuclear factor-kappa B and 5-	MCAO	[113]

			lipoxygenase expression.		
9 10	Andrographolide (Terpenoid) Parthenolide	Andrographis paniculate, F: Acanthaceae Tanacetum	 Anti-inflammatory and protective against Cerebral IRI via suppression of NF-κB and microglial activation, and reducing production of cytokines (TNF-α and IL-1β) and pro-inflammatory factors (PGE₂). Protection against cerebral IRI	рМСАО МСАО	[110]
10	(Terpenoid)	parthenium, F: Asteraceae	through downregulating NF- κ B, phosho-p38MAPK, and caspase-1 expressions and ameliorating BBB permeability		
11	Ursolic acid (Terpenoid)	<i>Ocimum</i> <i>forskolei</i> , F: Lamiaceae	Anti-inflammatory, anti- apoptotic and neuroprotective against cerebral IRI possibly through the HMGB1/TLR4/NFkB signaling pathway.	MCAO	[129, 130]
12	Bilobalide (Terpenoid)	<i>Ginko biloba</i> , F: Ginkoaceae	Protection against alterations in mitochondrial respiratory activity in cerebral IRI <i>via</i> protecting complex I and complex III activities and preserving the energetic pool of tissues.	OGD/R	[119]
13	Nomilin (Terpenoid)	<i>Citrus limon,</i> F: Rutaceae	Protective in cerebral IRI via regulation of Nrf2/NQO1 pathway.	OGD MCAO	[80]
14	Paeoniflorin (Terpenoid)	Paeonia lactiflora, F: Paeoniaceae	Inhibition of astrocytic activation in cerebral IRI via regulating the Ca ²⁺ /CaMKII/CREB signaling pathway and reversing the increased expression of astrocyte marker protein GFAP.	tMCAO	[76]
15	Carnosic acid (Terpenoid)	Rosmarinus officinalis, F: Lamiaceae	Protective against After liver IRI, via anti-oxidative, anti- apoptotic -Anti-inflammatory via inactivating NF-κB signaling	MCAO	[47]

			pathway, leading to down- regulation of pro-inflammatory cytokines releasing.		
16	Linalool terpenoid	<i>Lavandula</i> officinalis, F: Lamiaceae	Neuroprotective in cerebral IRI via reducing pro-inflammatory markers, and caused Nrf2 subcellular redistribution.	MCAO	[82]
17	Senkyunolide I (Terpene)	Ligusticum chuanxiong, F: Apiaceae	Neuroprotective, anti-oxidant and anti-apoptotic against cerebral IRI (activate the Nrf2/ARE pathway by up- regulating the phosphorylation of Erk1/2 and inducing Nrf2 nuclear translocation with enhanced HO-1 and NQO1 expressions).	MCAO	[108]
18	Tanshinone A (Terpenoid)	Salvia miltiorrhiza, F: Lamiaceae	Ref to text. -Suppression of NF-κB expression (MDA↓; SOD↑) - Attenuation of brain oedema formation (ICAM-1↓; MMP- 9↓; iNOS↓).	-pMCAO -tMCAO	[7]
19	Ligustrazine (Terpenoid)	<i>Ligusticum</i> <i>chuanxiong</i> , F: Apiaceae	Protection against cerebral endothelial cells injury via the inhibition of the Rho/ROCK signaling pathway (SOD↑; MDA↓; iNOS↓).	OGD/R	[11]
20	Z-ligustilide (Terpenoid)	Rhizoma Chuanxiong, F: Apiaceae	Ref to text		[1]
21	Triptolide (Terpenoid)	<i>Tripterygium</i> <i>wilfordii</i> , F: Celastraceae	Anticytotoxic and anti- apoptotic against cerebral IRI <i>via</i> inhibiting NF-κB and p38MAPK signaling pathways.	tMCAO/O GD	[17]
22	Safranal (Terpenoid)	Crocus sativus, F: Iridaceae	Protective against skeletal muscle IRI via inhibition of oxidative stress, muscle contractility, I_{Ca-L} and the regulation of Ca^{2+} homeostasis	ISO- induced	[63]
23	Britanin (Terpenoid)	<i>Inula lineariifolia</i> , F: Asteraceae	-Neuroprotective against cerebral IRI via binding Keap1, inhibiting Keap1-mediated ubiquitination of Nrf2 and	OGD/R and MCAO/R	[116]

			inducing Nrf2/HO-1 pathway		
24	Ginkgolide K (Terpenoid)	Ginko pilopa, F: Ginkoaceae	Anti-oxidant and protective against cerebral muscle IRI via reversed the level of MDA, NO and NOS	MCAO	[43]
25	Salvianolic acid A (Phenolic)	<i>Salvia</i> <i>miltiorrhiza</i> , F: Lamiaceae	Ref to text		[8]
26	Emodin (Phenolic)	Polygonum multiflorum Thunb., F: Polygonaceae	anti-apoptotic against Photothrombotic cortical ischaemia through activation of the PI3K/Akt signaling pathway	glutamate- induced	[9]
27	Magnesium lithospermate B (Phenolic)	<i>Salvia miltiorrhiza</i> , F: Lamiaceae	Anti-apoptosis and attenuation of cerebral excitatory neurotoxicity during IRI through the regulation of miR- 107/GLT-1 pathway.	tMCAO	[14]
28	2,3,5,4'-Tetra hydroxystilbene-2-O -β-D-glucoside (Phenolic)	Polygonum multiflorum, F: Polygonaceae	Cytoprotective in focal cerebral IRI via Down-regulation of JNK, SIRT1, and NF-κB pathways	OGD/R MCAO	[5]
29	Paeonol (Phenolic)	Paeonia suffruticosa, F: Paeoniaceae	Anti-oxidant and anti-apoptotic against brain ischemia injury by increasing antioxidase activity, reducing oxygen-free radicals-induced damage, and inhibiting cell apoptosis -neuroprotective effect by restraining calcium overload and decreasing excitotoxicity	OGD BCCAO	[45]
30	Osthole (Phenolic)	<i>Cnidium</i> <i>monnieri</i> , F: Apiaceae	Anti-oxidant and Neuroprotective against cerebral IRI via activating Nrf2 pathway	BCAO	[117]
31	Tetrahydroxystilbene (Phenolic)	Polygonum multiflorum, F: Polygonaceae	Anti-apoptotic against focal cerebral IRI via inhibition of iNOS mRNA expression and NF-κB	OGD	[5]
32	Cinnamophilin neolignane (Phenolic)	Cinnamomum Philippinense, F: Lauraceae	Protective against transient focal cerebral ischemia via antioxidant and anti-	(MCAO) OGD	[24]

			inflammatory effects(inhibited (TNF-α), nitrite/nitrate, interleukin-6 (IL-6)		
33	Cinnamophilin (phenolic)	Cinnamon <i>Cinnamomum</i> <i>zeylanicum</i> , F: Lamiaceae	Protective against transient focal cerebral IRI via inhibition of COX-1 and 5-lipoxygenase	OGD/R	[24]
34	Schisandrin B (Phenolic)	Schisandra chinensis, F: Schisandraceae	Neuroprotective against transient focal cerebral ischemia via inhibiting inflammatory markers (TNF- $\alpha\downarrow$; IL-1 $\beta\downarrow$; MMP-2 \downarrow ; MMP- 9 \downarrow)	tMCAO	[18]
35	Epigallocatechin gallate (Phenolic)	Green Tea Camellia thinensis, F: Theaceae	Ref to text		
36	Shikonin (Phenolic)	<i>Lithospermum</i> <i>erythrorhizon,</i> F: Boraginaceae	Anti-oxidant and protective against cerebral IRI via reducing NDS, MDA and ROS) and upregulating SOD, catalase, GSH-Px activities	MCAO	[44]
37	Paeonol (Phenolic)	Paeonia suffruticosa, F: Paeoniaceae	Anti-oxidant and anti-apoptotic against brain ischemia injury by increasing antioxidase activity, reducing oxygen-free radicals-induced damage, and inhibiting cell apoptosis. Neuroprotective effect by restraining calcium overload and decreasing excitotoxicity.	OGD BCCAO	[45]
38	Curculigoside A (Phenolic)	<i>Curculigo</i> <i>Orchioides</i> , F: Hypoxidaceae	Antiproliferative and protective against cerebral IRI through inducing angiogenesis <i>in</i> <i>vitro</i> via a programed VCAM- 1/Egr-3/CREB/VEGF signaling axis.	MCAO OGD	[78]
39	Theaflavin (Phenolic)	Camellia sinensis, F: Theaceae	Antiproliferative and anti- apoptotic in cerebral IRI decreasing oxidative stress.	MCAO	[74]
40	Salidroside (Phenolic)	<i>Rhodiola rosea</i> , F: Crassulaceae	neuroprotective for cerebral IRI due to inhibitions of RIP140-mediated inflammation	MCAO	[72]

50	Honokiol	Magnolia	Protective against renal IRI via	Bilateral	[54]
		Theaceae	mitochondria dysfunction, reducing oxidative stress and suppressing neural cell apoptosis.		
49	Gallic acid (Phenolic)	Camellia sinensis, F:	protected against cerebral IRI via activate Nrf2, modulating	MCAO	[74]
48	Alpha tocopherol (Phenolic)	<i>Rosmarinus</i> <i>officinalis</i> , F: Lamiaceae	Anti-oxidant and neuroprotective from cerebral IRI via reduction of cleaved caspase-3 and LC3-II.	tMCAO	[93]
47	Corilagin (Phenolic)	<i>Phyllanthus</i> <i>emblica</i> , F: Phyllanthaceae	Anti-apoptotic and anti- inflammatory against cerebral IRI via attenuating oxidative stress and enhancing angiogenesis <i>via</i> activation of Nrf2 signaling pathway.	MCAO	[100]
46	Chlorogenic acid (Phenolic)	<i>O. forskolei</i> , F: Lamiaceae	Anti-apoptotic and anti- inflammatory against cerebral IRI via mediating Nrf2 pathway.	MCAO	[91, 92]
45	Procyanidin B2 (Phenolic)	Grapes <i>Vitis vinifera</i> , F: Vitaceae	Neuroprotection against cerebral IRI via activation of NF-E2-related factor pathway.	MCAO	[89]
44	Mangiferin Xanthone, (Phenolic)	<i>Mangifera</i> <i>indica</i> , F: Anacardiaceae	Anti-inflammatory and protective against cerebral IRI via enhancing Nrf2/HO-1 pathway.	MCAO	[88]
43	Lyciumamide A (Phenolic)	<i>Lycium</i> <i>barbarum</i> fruits, F: Solanaceae	NeuroProtective, anti-oxidant and anti-apoptotic against focal cerebral IRI via induction of the Nrf2/HO-1 pathway (increasing nuclear Nrf2 and cytoplasmic HO-1 levels).	MCAO	[87]
42	Rosmarinic acid (Phenolic)	Salvia officinalis, F: Lamiaceae	NeuroProtective, anti-oxidant and anti-apoptotic against focal cerebral IRI via inducing Nrf2/HO-1 pathway through the PI3K/Akt signaling.	MCAO	[85, 86]
41	Gastrodin (Phenolic)	<i>Gastrodia elata</i> , F: Orchidaceae	neuroprotective for cerebral IRI via a reduction in glutamate level.	HII	[73]

	(Phenolic)	officinalis, F:	activation of nuclear factor	renal model	
		Magnoliaceae	erythroid 2-related factor 2, via PI3K/Akt and protein kinase C signaling.		
51	Salvianolic acid B, (phenolic)	Salviae miltiorrhizae, F: Lamiaceae	Ref to text.		[57]
52	4-OH-benzyl alcohol (Phenolic)	<i>Gastrodia elata,</i> F: Orchidaceae	Antagonize cerebral ischemia by increasing Bcl-2 expression, inhibiting caspase-3 activity and modulating cytoprotective genes (Nrf2, PDI, and neurotrophic factors).	MCAO	[58]
53	Theaflavin (Phenolic)	<i>Camellia</i> sinensis (black tea), F: Theaceae	Neuroprotective and Anti- inflammatory against cerebral IRI via reducing expression of STAT-1 (inflammation-related genes such as ICAM-1, VCAM-1, E-selectin, IL-6, IL- 8, and cyclooxygenase-2)	MCAO	[48]
54	4'-geranyloxyferulic acid. (Phenolic)	<i>Acronychia</i> <i>baueri</i> , F: Rutaceae	Anti-inflammatory agents used to treat cerebral IRI via regulation of PPARγ and NF- κB pathway.	MCAO	[49, 50]
55	Hydroxysafflor yellowA (Phenolic)	<i>Carthamus</i> <i>tinctorium</i> , F: Asteraceae	Anti-inflammatory against cerebral IRI by suppressing p38 phosphorylation and NF-B signaling.	OGD	[75]
56	Schizandrin A (Phenolic)	Schisandra chinensis, F: Schisandraceae	Anti-oxidant and neuroprotective against Cerebral IRI via regulating the AMPK/Nrf2 pathway and suppressing inflammation and oxidative stress.	MCAO	[109]
57	Forsythiaside A (Phenolic)	Forsythia suspensa, F: Oleaceae	Anti-apoptotic and anti- inflammatory against cerebral IRI via mediation of the activation of Nrf2 and ER stress pathways.	MCAO	[111]
58	Trilobatin (Phenolic)	<i>Lithocarpus</i> <i>polystachyus</i> , F: Fagaceae	protective, antioxidant and anti-inflammatory in astrocytes and cortical neurons in cerebral IRI via upregulation of nuclear	MCAO and OGD	[74]

00	(Flavonoid)	Rutaceae	inflammatory against cerebral		
66	Nobiletin	<i>Citrus nobilis</i> , F:	signaling pathway. Anti-apoptotic and anti-	pMCAO	[81]
			via regulation of Nrf2/Keap1		
		Berberidaceae	cerebral IRI in SH-SY5Y cells	maacca	
05	(Flavonoid)	<i>Epimedium</i> grandiflorum, F:	neuroprotective against	induced	[70]
65	Icaritin	Enimodium	antioxidant defense capacity. Anti-apoptotic and	H2O2-	[70]
		Asteraceae	augmentation of cellular		
	(Flavonoid)	breviscapus, F:	against cerebral IRI via		
64	Scutellarin	Erigeron	Anti-oxidant and Protective	MCAO	[67]
	~ * *	Lamiaceae	effect on the gene expression.		
	(Flavonoid)	forskolei, F:	cerebral IRI via regulatory		
63	Gardenin	Ocimum	Protective against focal	LCAO	[66]
			Na+K+ATPase activity.		
			protecting brain		
			and its antioxidant property and		
		Fabaceae	cerebral energy metabolism		
	(Flavonoid)	glabra, F:	due to the amelioration of		
62	Isoliquiritigenin	Glycyrrhiza	- protective against cerebral IRI	MCAO	[64]
		Theaceae	neuroprotective HO1 enzyme.		
		sinensis, F:	of Nrf2 and an increase in the		
	(Flavonoid)	Camellia	cerebral IRI through activation	-	
61	Epicatechin	Black tea	Neuroprotective against	pdMCAO	[79]
			MDA and MPO levels).		
			GPx activities and decreasing		
			(increasing tissue SOD and		
	(Thenone)	Lannaeeae	decreasing oxidative stress	Isenenna	152
00	(Phenolic)	Lamiaceae	against mesenteric IRI by	ischemia	132]
60	Lithospermic acid	O. forskoleoi, F:	Anti-oxidant and Protective	Intestinal	[92,
			cortex.		
			mediated signaling, respectively, in penumbral		
			Beclin-1/LC3A/B-II/Atg5-		
			caspase-3- (or Bax/AIF-) and		
			c/Smac/DIABLO/XIAP/		
		Apiaceae	Bax/cytochrome		
	(Phenolic)	<i>chuanxiong</i> , F:	IRI via regulation of		
59	Ferulic acid	Ligusticum	- anti-apoptotic against cerebral	pMCAO	[118]
			Keap1.		
			expression and the reduction of		
			expression, increasing Sirt3		
			Nrf2, NQO1, and HO-1		

			IRI via modulating the MAPK signaling pathway (upregulating Bcl-2 and downregulating Bax, caspase3, p-p38 and MAPKAP-2.		
67	Apigenin-7-O-β-D-(- 6"-p-coumaroyl)- glucopyranoside (Flavonoid)	<i>Clematis</i> <i>tangutica</i> , F: Ranunculaceae	Anti-apoptotic and cardioprotective against myocardial IRI Via activating PKCɛ (reduces mitochondrial oxidative stress and promotes Nrf2/HO-1-mediated anti- apoptosis signaling).	ligation of the left anterior descending coronary artery	[106]
68	Myricetin (Flavonoid)	<i>Tomatoes</i> <i>Solanum</i> <i>lycopersicum</i> , F: Solanaceae	Neuroprotection against cerebral IRI via decreasing reactive oxygen species.	MCAO	[90]
69	Silibinin-C-2',3-bis hydrogensuccinat (Flavonoid)	Milk thistle <i>Silybum</i> <i>marianum,</i> F: Asteraceae	Anti-oxidant and protective against skeletal muscle IRI via reduction of reactive oxygen species (prevent ROS lipid peroxidation).	-	[41]
70	Butein (Flavonoid)	Rhus verniciflua (Cashew), F: Anacardiaceae	Protective against renal IRI via activating sirt1.	Open and close of peritoneum	[48]
71	Wogonin (Flavonoid)	Scutellaria baicalensis, F: Lamiaceae	Anti-inflammatory, attenuated the death of hippocampal neurons by transient global ischemia via suppression of NFκB activity (diminishing LPS-induced TNF-α, IL-1β, and NO production).	OGD	[44]
72	Isoquercetin (Flavonoid)	<i>Mangifera</i> <i>indica</i> , F: Anacardiaceae	Antioxidant, anti-apoptotic and protective against cerebral IRI via inducing the translocation of Nrf2 into the nucleus, and inhibiting NOX4/ROS/NF-B pathway.	MCAO OGD	[99]
73	6"-O- succinylapigenin (Flavonoid)	<i>Matricaria</i> <i>chamomilla</i> , F: Asteraceae	Active against cerebral IRI via activating the ERK/Nrf2/HO-1 pathway.	MCAO	[101]
74	Luteoloside (Flavonoid)	<i>Cynara</i> <i>scolymus</i> , F: Asteraceae	Antineuro-inflammatory against focal cerebral IRI via inhibiting NF-κB signaling	МСАО	[102]

			pathway.		
75	Biochanin A (Flavonoid)	Glycine max, F: Fabaceae	Protective against myocardia IRI through blocking TLR4/NF-kB/NLRP3 signaling pathway.	transient coronary ligation	[96]
76	Xanthohumol (Flavonoid)	<i>Humulus lupulus</i> , F: Cannabaceae	Anti-apoptotic, anti-oxidant and anti-inflammatory against cerebral IRI via the inhibition of phosphorylation of p38- MAPK and the mediation of nuclear Nrf2 activation.	MCAO and OGD	[97]
77	Galuteolin (Flavonoid)	<i>Lonicera</i> <i>Japonica</i> , F: Caprifoliaceae	Neuroprotective against cerebral IRI-through the down- regulation of autophagy-related indicators in I/R Anti-apoptotic, anti-oxidant and anti-inflammatory (reduced pro-inflammatory factors IL-1 β and TNF- α and inhibited VEGF expression).	MCAO/R	[103]
78	Isoquercetin (Flavonoid)	<i>Mangifera</i> <i>indica</i> , F: Anacardiaceae	- antioxidant, anti-apoptotic and protective against cerebral IRI via inducing the translocation of Nrf2 into the nucleus, and inhibiting NOX4/ROS/NF-B pathway.	MCAO OGD	[99]
79	Baicalein (Flavonoid)	<i>Scutellaria</i> <i>baicalensis</i> , F: Lamiaceae	protective against cerebral IRI by inhibition of 12/15- lipoxygenase pathway.	tMCAO	[1]
80	Baicalin (Flavonoid)	<i>Scutellaria</i> <i>baicalensis</i> , F: Lamiaceae	protect against cerebral IRI via inhibiting TLR2/4 signaling pathway and reducing the expression of TLR2/4, NF κ B, COX-2 and iNOS (Li <i>et al.</i> , 2017).	pMCAO	[19]
81	Xanthohumol (Chalcone, flavonoid)	<i>Humulus</i> <i>lupulus</i> , F: Cannabaceae	Protective against renal IRI via ROS scavenging and an anti- inflammatory effect mediated by the inhibition of the JAK- 2/STAT-3 pathway.	MCAO	[35]
82	Naringenin (Flavonoid)	<i>Ocimum</i> <i>sanctum</i> , F: Lamiaceae	Neuroprotective against cerebral IRI by suppressing NF-κB-mediated	tMCAO	[36]

			neuroinflammation.		
83	Puerarin (Flavonoid)	<i>Pueria</i> Radix, F: Fabaceae	Neuroprotection against cerebral IRI associated with erythropoietin (EPO) elevated expression and decreased COX-2 level.	MCAO OGD	[19]
84	Calycosin (Favonoid)	Astragalus membranaceu, F: Fabaceae	Neuroprotective against cerebral IRI via anti- autophagic, anti-apoptotic and anti-inflammatory actions (upregulated the expression of p62, NBR1 and Bcl-2, and downregulated the level of TNF-α).	Focal cerebral IRI	[126]
85	Calycosin-7-o-ß-d- glucoside (Flavonoid)	Astragalus membranaceus, F: Fabaceae	Anti-oxidant and anti-apoptotic against cerebral IRI via the SIRT1/FOX01/PGC- 1α signaling pathway. (upregulated the expression of SIRT1, FOX01, PGC- 1α , and Bcl-2 and downregulated the expression of Bax).	OGD/R	[127]
86	Lutein (Flavonoid)	Citrus limon, F: Rutaceae	Protective against ovarian IRI by its antioxidative and anti- inflammatory activities.	Vascular clips	[123]
87	Apigenin (Flavonoid)	<i>Matricaria</i> <i>recutita,</i> F: Asteraceae	Anti-apoptotic and anti-oxidant for cerebral IRI via mitochondrial activation (improved MMP in PC12 cells with CoCl ₂ -induced injury).	МСАО	[131]
88	Breviscapine (Flavone)	<i>Scutellaria</i> <i>barbata</i> , F: Lamiaceae	anti-apoptotic and neuroprotective against cerebral IRI via regulating the protein expression related to apoptosis (inhibited the expression caspase-3 and up-regulated the expression of bcl-2).	MCAO	[134]
89	Silibinin (Flavonoid)	Silybum marianum, F: asteraceae	Ref to text.		[137]
90	5,7,3',4',5'- pentahydroxy	Anogeissus Pendula, F:	Anti-apoptotic and anti-oxidant against cerebral IRI via	MCAO	[139]

	dihydroflavanol-3Ο- (2''-O-galloyl)-β-D- glucopyranoside (Flavonoid)	Combretaceae	reduced lipid peroxidation and inhibited cyclooxygenase activity.		
91	Anthocyanin (Flavonoid)	<i>Lycium</i> <i>ruthenicum</i> , F: Solanaceae	Anti-inflammatory and protective against cerebral IRI via regulation of Nuclear factor-kappa B (NF-κB) and the NLRP3 inflammasome pathway.	MCAO/R	[140]
92	Genistein (Flavonoid)	Ocimum sanctum, F: Lamiaceae	Neuroprotective in transient focal cerebral IRI via increasing endogenous antioxidant mechanisms and reducing oxidative stress.	MCAO	[20] [21]
93	Equol (4', 7 isoflavandiol) (flavonoid)	Soybean Glycine max, F: Fabaceae	Neuroprotection against focal cerebral IRI by inhibiting oxidative stress.	MCAO	[20]
94	Luteolin (Flavonoid)	<i>Ixeris</i> <i>sonchifolia</i> , F: Asteraceae	Neuroprotective against <i>ischemia-induced cerebral</i> <i>injury</i> via activation of Nrf-2.	MCAO	[23]
95	Polygalasaponin F (Saponin)	Polygala japonica, F: Polygalaceae	Anti-apoptotic and protective against cerebral IRI via activation of PI3K/Akt signalling	OGD/R-	[61]
96	Ruscogenin (Saponin)	<i>Ophiopogon</i> <i>Japonicas</i> , F: Asparagaceae	Neuroprotection against focal cerebral IRI via inhibition of NF-κB p65 expression and activation of NF-κB Signaling pathway.	MCAO	[29]
97	Dioscin (Saponin)	<i>Dioscorea</i> <i>opposite</i> , F: Dioscoreaceae	Inhibited cerebral IRI-induced inflammation through inhibition of the TLR4/MyD88/NF-kB.	MCAO	[37]
98	Diosgenin (Saponin)	Dioscorea rhizome, F: Dioscoreaceae	Neuroprotective against cerebral IRI .	(MCAO)	[46]
99	Glycyrrhizin (Saponin)	<i>Glycyrrhiza</i> <i>glabra</i> , F: Fabacaea	NeuroProtective against cerebral IRI via inhibiting HMGB1 and IL-17A.	MCAO	[77]
100	S-allyl cysteine (Sulphur containing	Garlic Allium sativum,	Cytoprotective of astrocytes in cerebral IRI via increasing in	MCAO	[83]

	compound)	F:	Nrf2 and its targets and		
		Amaryllidaceae	decreased phosphorylated JNK and p38 levels.		
101	(DATs) di-allyl trisulfide (Sulphur containing compound)	Garlic Allium sativum, F: Amaryllidaceae	Protective against Cerebral IRI Via Nrf2 induction (reduced MMP9 levels, MDA levels).	MCAO	[84]
102	3H-1,2-dithiole-3- (Sulphur containing compound)	Broccoli Brassica olerace a, F: Brassicaceae	Neuroprotective from cerebral IRI via inducing Nrf2 expression in the brain which suppresses microglia activation.	tMCAO	[94]
103	Sulforaphane (Sulphur containing compound)	Broccoli Brassica olerace a, F: Brassicaceae	Anti-oxidant and protective against Intestinal and liver IRI through Nrf2-ARE pathway (increased level of liver Nrf2 and HO-1 expression).	clamping the superior mesenteric artery	[95]
104	Lipoic acid (Sulphur containing compound)	Peas <i>Pisum sativum</i> , F: Fabaceae	Anti-oxidant and protective against cerebral IRI through activation of the BDNF-PI3K/Akt-ERK1/2 pathway.	MCAO	[98]
105	Allicin (Sulphur containing compound)	Allium sativa L., F: Amaryllidaceae	Anti-apoptotic and neuroprotective against cerebral IRI via increasing the activities of (CAT, SOD, GPX, GST) and promoting the angiogenesis in the peri-infarct zone.	MCAO	[133]
106	Guattegaumerine (Alkaloid)	<i>Guatteria</i> <i>gaumeri</i> , F: Annonaceae	protective against cerebral IRI via anti-oxidant anti- inflammatory and anti- apoptotic.	H2O2	[53]
107	Spiramin T (Alkaloid)	<i>Spiraea japonica</i> var. acuta, F: Rosaceae	NeuroProtective against global cerebral IRI. Via modulation of endogenous antioxidant enzymes and reduction of calcium accumulation.	MCAO	[40]
108	Huperzine A (Alkaloid)	Huperzia serrata, F: Lycopodiaceae	Neuroprotective and anti- inflammatory against focal cerebral IRI via inhibition of NF-κB translocation and	MCAO	[31]

			reduced iNOS and COX-2 expression in cortex and striatum.		
109	Sinomenine, (alkaloid)	Sinomenium Acutum, F: Menispermaceae	Neuroprotective action on infarction size increased due to ischemia and recovered the neurological function.	cerebral ischemia- reperfusion	[32]
110	Leonurine (Alkaloid)	Leonotis leonurus, F: Lamiaceae	Neuroprotective in cerebral IRI via Inhibition of mitochondrial ROS production (SOD↑; GPx↑; MDA↓).	MCAO	[3]
111	Neferine (Alkaloid)	<i>Nelumbo nucifera</i> , F: Nelumbonaceae	Neuroprotective against cerebral IRI via inducing autophagy and regulating the p62/Keap1/Nrf2 pathway which activated Nrf2/HO-1.	рМСАО	[115]
112	Ephedrine (Alkaloid)	<i>Ephedra sinica</i> , F: Ephedraceae	Anti-apoptotic and neuroprotective against cerebral IRI via reducing inflammatory responses, associating with decreasing the protein expression of p-NF-κB.	MCAO	[136]
113	Swertiamarin (Iridoid)	<i>Gentiana</i> <i>macrophylla</i> , F: Gentianaceae	Anti-oxidant, anti-apoptotic and neuroprotective against cerebral IRI via -suppressing oxidative stress by activation of the Nrf2/ HO- 1pathway.	MCAO	[114]
114	Cornel (Iridoid)	Cornus officinalis, F: Cornaceae	Promoted neurogenesis and angiogenesis and improved neurological function after cerebral ischemia via modulating CIG's increasing VEGF and Flk-1 in the brain.	MCAO	[59]
115	Cornin (Iridoid)	<i>Cornus florida</i> , F: Cornaceae	Neuroprotective in cerebral IRI via Stabilization of mitochondrial function (SOD↑; GPx↑; MDA↓).	MCAO	[4]
116	Jasminoidin (Iridoid)	Salvia miltiorrhiza, F: Lamiaceae	Protective against focal cerebral IRI via, repressing the expression of tumor necrosis factor-alpha and interlukin 1 beta as well as	OGD/R	[38, 39]

			vonWillebrand factor.		
117	Beta carotene (Carotenoid)	<i>Daucus carota</i> , F: Apiaceae	Protective against cerebral IRI via significantly enhancing the expression levels of genes (including apo E) related to cholesterol regulation and promoting neuronal repair after brain injuries.	MCAO	[120]
118	b-cryptoxanthin (Carotenoid)	<i>Citrus reticulata</i> , F: Rutaceae	Protective against myocardial IRI via -inhibiting NF-κB-mediated inflammatory signalling in rats (decreasing p-p38 MAPK levels).	Left anterior descending coronary artery ligation	[121]
119	Zeaxanthin (Carotenoid)	<i>Lycium</i> Chinese berries, F: Solanaceae	NeuroProtective against retinal IRI by increase in visual acuity due to optical reasons and enhance in the survival of RGC.	cannulation	[124]
120	Astaxanthin (Carotenoid)	<i>Nicotiana tabacum</i> , F: Solanaceae	Protective against renal IRI via Anti-apoptotic, anti-oxidant and anti-inflammatory.	Renal IRI	[125]
121	Dihydrocapsaicin (Carotenoid)	Capsicum annum, F: solanaceae	Anti-oxidant and Protective against focal cerebral IRI via increasing the expression of Nrf2 and NQO1 and decreasing NADPH oxidase (NOX2, NOX4), p65 subunit of NF-kB, and MMP9 levels.	MCAO	[85]
122	Crocin (Carotenoid)	Crocus sativus, F: Iridaceae	Ref to text.		[42]
123	Polysaccharides (Miscellaneous)	<i>Momordica</i> <i>charantia</i> , F: Cucurbitaceae	Inhibition of intracerebral hemorrhage-induced brain injury via Inhibition of JNK3 signalling cascade.	OGD/R, MCAO	[6]
124	Ginkgolide B (Miscellaneous)	<i>Ginco biloba,</i> F: Ginkgoaceae	Protective and anti-apoptotic against cerebral IRI via modulation of the PI3K signalling pathway.	OGD	[65]
125	Oleuropein (Miscellaneous)	Olea europaea, F: Oleaceae	neuroprotective against cerebral IRI via a reduction in anti-apoptotic markers	МСАО	[10]
126	Embelin	<i>Embelia ribes</i> , F:	Neuroprotective against	BCCAO	[12]

	(Miscellaneous)	Primulaceae	transient cerebral IRI through a reduction of oxidative markers (GST↑; MDA↓; total thiol↑)		
127	Phycocyanobilin (Miscellaneous)	<i>Spirulina</i> <i>platensis</i> , F: Microcoleaceae	prevented the H_2O_2 and glutamate-induced PC12 cell injury via a modulation of 19 genes mostly related to a detrimental pro- inflammatory environment and counteracted the oxidative imbalance in the treated BCCAo animals	pBCCAO	[13]
128	Hyperforin (Miscellaneous)	<i>Hypericum</i> <i>perforatum</i> , F: Hypericaceae	- protection against transient focal cerebral IRI via COX-1 and 5-lipoxygenas inhibition.	MCAO	[25]
129	Withaferin A (Miscellaneous)	<i>Withania</i> <i>somnifera</i> , F: Solanaceae	Prevents Myocardial IRI by Upregulating AMP-Activated Protein Kinase-Dependent B- Cell Lymphoma2 Signaling	Reperfusio n injury	[69]
130	Carnosine (Miscellaneous)	<i>Ginko pilopa</i> , F: Ginkoaceae	Neuroprotective and anti- exitototoxic in transient and permanent cerebral IRI via a reduction of reactive oxygen species	pMCAO, tMCAO	[33]
131	Phycocyanobilin (Miscellaneous)	Arthrospira platensis, F: Microcoleaceae	Protective against PC12 cell injury in cerebral IRI via modulating 190 genes (93 up- and 97 down-regulated) associated to several immunological and inflammatory processes	pBCCAO	[13]
II.	Bioactives for manage	ement of myocardi	al ischemia		
132	Astragaloside (Terpenoid)	Astragalus membranaceous, F: Leguminosae	Cardioprotective against IRI via suppression of NF-κB, MMP-9, ICAM-1, and TNF-α in the parenchyma of brain	MCAO	[30]
133	Protocatechualdehyde (Phenolic)	Salvia miltiorrhiza, F: Lamiaceae	Anti-apoptotic and anti- inflammatory Against IRI in cultured neonatal rat cardiomyocytes-via inhibiting the NF-κB signaling pathway.	ligation of the left anterior descending coronary artery	[105]

134	Cyanidin-3-O-D- glucopyranoside (Phenolic)	<i>Morus albus,</i> F: Moraceae	Protective against myocardial IRI. suppressed the expressions of USP19, Beclin1, NCOA4, and LC3II/LC3I. relieved oxidative stress, downregulated LC3II/LC3I, TfR1 expression, and upregulated the expressions of FTH1 and GPX4.	OGD	[68]
135	Tetrandrine (Phenolic)	Sephania tetrandra, F: Menispermaceae	Protective against myocardial IRI through reducing the harmful cytokine TNF-α and IL-6, IL-1β.	Left anterior descending coronary artery ligation	[138]
136	Fisetin (Flavonoid)	Salvia Rosmarinus, F: Lamiaceae	Protected against myocardial IRI <i>via</i> inhibiting expression of NF-κB, decreased the loss of MMP-9 and reduced nuclear translocation of NF-kB.	HII	[60]
137	Palmatine, (Flavonoid)	Coptis chinensis, F: Ranunculaceae	Protective against myocardial IRI via reducing oxidative stress and modulating inflammatory mediators.	HII	[56]
138	Isorhamnetin (Flavonoid)	<i>Ginko biloba,</i> F: Ginkgoaceae	Anti-apoptotic and protective effect against myocardial IRI via the attenuation of apoptosis and oxidative stress (decreased expression of Bax and cleaved-caspase-3, increased expression of Bcl-2).	Langendorf f-perfused hearts.	[107]
139	Pinocembrin (Flavonoid)	<i>Pinus densiflora,</i> F: pinacaea	Protective against myocardial IRI via direct stimulation of cardiac glycolysis through promoting the expression of the glycolytic enzyme, PFKFB3.	Global IR	[141]
140	Berberine (Alkaloid)	Rhizoma coptidis	Reduced myocardial apoptosis in myocardial I/R via activating AMPK and PI3K–Akt–eNOS signaling in diabetic rats.	HII (hypoxia ischemic injury)	[55]
141	Cyclobuxine (Alkaloid)	<i>Buxus</i> <i>microphylla</i> , F: Buxaceae	Neuroprotective against myocardial IRI via inhibiting the release of ATP metabolites, and preventing the release of creatine phosphokinase during reperfusion.		[135]

142 <i>143</i>	Picroside II (Iridoid) Lycopene (Carotenoid)	Picrorhiza kurroa, F: Scrophulariaceae Solanum lycopersicum, F: Solanaceae	Protective and anti-apoptotic against myocardial IRI via upregulating the phosphoinositide 3- kinase/Akt/endothelial NOS pathway (increase NO production and regulate Bcl-2 and Bax expressions. Protective against myocardial IRI via inhibition of ROS accumulation and consequent inflammation in mice	Global ischemia 1 Left anterior descending	[128]
			(suppressed JNK	coronary artery	
III.	Disastiyas for monos	amont of both sous	phosphorylation).	ligation	
111. 144		-	bral and myocardial ischemia Ref to text.		[62]
144	Thymoquinone (Phenolic)	<i>Nigella sativa,</i> F: Ranunculaceae	Kei to text.		[62]
145	Hesperetin	Citrus genus, F:	Ref to text.		[52]
	(Flavanone)	Rutaceae			
146	Quercetin (Flavonoid)	<i>Citrus</i> <i>reticulatus</i> , F: Rutaceae	Ref to text.		[22]
147	Ginsenoside Rb1 (Saponin)	Panax ginseng,F: Araliaceae	Ref to text.		[26]
148	Ginsenoside Rg3 (Saponin)	<i>Panax ginseng,</i> F: Araliaceae	Ref to text.		[27]
149	Ginsenoside Rh2 (Saponin)	Panax ginseng, F: Araliaceae	Ref to text.		[27]
150	Ginsenoside Rd (Saponin)	Panax ginseng, F: Araliaceae	Ref to text.		[28]
151	Notoginsenoside R1 (Saponin)	Panax ginseng, F: Araliaceae	Ref to text.		[104]
152	Ginsenoside Rg1 (Saponin)	Panax ginseng, F: Araliaceae	Ref to text.		[71]
153	Curcumin (Carotenoid)	<i>Curcuma longa</i> , F: Zingiberaceae	Ref to text.		[19]

Table S2. All collected ischemia-related targets (407 targets) from literature and GeneBank database.

Gene Symbol	Description
MTHFR	Methylenetetrahydrofolate Reductase
F2	Coagulation Factor II, Thrombin

F5	Coagulation Factor V
ACE	Angiotensin I Converting Enzyme
NOS3	Nitric Oxide Synthase 3
NOTCH3	Notch Receptor 3
IL6	Interleukin 6
GP1BA	Glycoprotein Ib Platelet Subunit Alpha
AGTR1	Angiotensin II Receptor Type 1
AGT	Angiotensinogen
PON1	Paraoxonase 1
ENG	Endoglin
CST3	Cystatin C
ALOX5AP	Arachidonate 5-Lipoxygenase Activating Protein
NPPA	Natriuretic Peptide A
MAPT	Microtubule Associated Protein Tau
CRP	C-Reactive Protein
TNF	Tumor Necrosis Factor
FBN1	Fibrillin 1
GLA	Galactosidase Alpha
TLR4	Toll Like Receptor 4
LDLR	Low Density Lipoprotein Receptor
PRKCH	Protein Kinase C Eta
MT-TL1	Mitochondrially Encoded TRNA-Leu (UUA/G) 1
APOE	Apolipoprotein E
ADAMTS13	ADAM Metallopeptidase With Thrombospondin Type 1 Motif 13
PON2	Paraoxonase 2
TH	Tyrosine Hydroxylase
EDNRA	Endothelin Receptor Type A
GNB3	G Protein Subunit Beta 3
VKORC1	Vitamin K Epoxide Reductase Complex Subunit 1
PLAT	Plasminogen Activator, Tissue Type
PROZ	Protein Z, Vitamin K Dependent Plasma Glycoprotein
PSEN1	Presenilin 1
SELP	Selectin P
EPOR	Erythropoietin Receptor
APP	Amyloid Beta Precursor Protein
COL4A1	Collagen Type IV Alpha 1 Chain
PTGIS	Prostaglandin I2 Synthase
TNFRSF1A	TNF Receptor Superfamily Member 1A
SERPINE1	Serpin Family E Member 1
MMP9	Matrix Metallopeptidase 9
	Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic
PIK3CA	Subunit Alpha
VWF	Von Willebrand Factor
NPPB	Natriuretic Peptide B
SERPINC1	Serpin Family C Member 1

HTRA1	HtrA Serine Peptidase 1
PDE4D	Phosphodiesterase 4D
BDNF	Brain Derived Neurotrophic Factor
АРОН	Apolipoprotein H
IL10	Interleukin 10
ACSL4	Acyl-CoA Synthetase Long Chain Family Member 4
INS	Insulin
TREX1	
	Three Prime Repair Exonuclease 1 Janus Kinase 2
JAK2	
TP53	Tumor Protein P53
ELN	Elastin
MT-ND4	Mitochondrially Encoded NADH:Ubiquinone Oxidoreductase Core Subunit 4
ACTA2	
VEGFA	Actin Alpha 2, Smooth Muscle Vascular Endothelial Growth Factor A
F3	
	Coagulation Factor III, Tissue Factor
LPA	Lipoprotein(A)
APOB	Apolipoprotein B
ADA2	Adenosine Deaminase 2
ALB	Albumin
CASP3	Caspase 3
THBD	Thrombomodulin
FGA	Fibrinogen Alpha Chain
PLA2G7	Phospholipase A2 Group VII
TGFB2	Transforming Growth Factor Beta 2
REN	Renin
SOD2	Superoxide Dismutase 2
F7	Coagulation Factor VII
ENO2	Enolase 2
CXCL12	C-X-C Motif Chemokine Ligand 12
MYLK	Myosin Light Chain Kinase
TTR	Transthyretin
HMGCR	3-Hydroxy-3-Methylglutaryl-CoA Reductase
TGFBR2	Transforming Growth Factor Beta Receptor 2
IL1B	Interleukin 1 Beta
CDKN2B-	
AS1	CDKN2B Antisense RNA 1
NOS2	Nitric Oxide Synthase 2
ACVRL1	Activin A Receptor Like Type 1
ADM	Adrenomedullin
SOD1	Superoxide Dismutase 1
ALOX5	Arachidonate 5-Lipoxygenase
LMNA	Lamin A/C
EDN1	Endothelin 1
HSPA4	Heat Shock Protein Family A (Hsp70) Member 4

MYH11	Myosin Heavy Chain 11
OLR1	Oxidized Low Density Lipoprotein Receptor 1
PRKG1	Protein Kinase CGMP-Dependent 1
NOTCH1	Notch Receptor 1
F10	Coagulation Factor X
PF4	Platelet Factor 4
SERPINA3	Serpin Family A Member 3
PECAM1	Platelet And Endothelial Cell Adhesion Molecule 1
COG2	Component Of Oligomeric Golgi Complex 2
ABCA1	ATP Binding Cassette Subfamily A Member 1
F2R	Coagulation Factor II Thrombin Receptor
MT-TK	Mitochondrially Encoded TRNA-Lys (AAA/G)
ANGPT1	Angiopoietin 1
CCL2	C-C Motif Chemokine Ligand 2
MAP2	Microtubule Associated Protein 2
ADORA1	Adenosine A1 Receptor
AVP	Arginine Vasopressin
PLG	Plasminogen
LOX	Lysyl Oxidase
ADRB2	Adrenoceptor Beta 2
SH2B3	SH2B Adaptor Protein 3
PPBP	Pro-Platelet Basic Protein
	Mitochondrially Encoded NADH:Ubiquinone Oxidoreductase
MT-ND1	Core Subunit 1
CREB1	CAMP Responsive Element Binding Protein 1
RETN	Resistin
GUCY1A1	Guanylate Cyclase 1 Soluble Subunit Alpha 1
MBP	Myelin Basic Protein
P2RY12	Purinergic Receptor P2Y12
HMGB1	High Mobility Group Box 1
SELE	Selectin E
ACE2	Angiotensin I Converting Enzyme 2
MB	Myoglobin
SMAD3	SMAD Family Member 3
PPARG	Peroxisome Proliferator Activated Receptor Gamma
MIR126	MicroRNA 126
SLC1A2	Solute Carrier Family 1 Member 2
AQP4	Aquaporin 4
ADIPOQ	Adiponectin, C1Q And Collagen Domain Containing
PROCR	Protein C Receptor
PIK3C2A	Phosphatidylinositol-4-Phosphate 3-Kinase Catalytic Subunit Type 2 Alpha
HTR2A	5-Hydroxytryptamine Receptor 2A
CASP1	Caspase 1
SELL	Selectin L

RNF213	Ring Finger Protein 213
ESR1	Estrogen Receptor 1
AKT1	AKT Serine/Threonine Kinase 1
SULT1A3	Sulfotransferase Family 1A Member 3
SPP1	Secreted Phosphoprotein 1
CYCS	Cytochrome C, Somatic
CNR1	Cannabinoid Receptor 1
MT-CYB	Mitochondrially Encoded Cytochrome B
	Mitochondrially Encoded NADH:Ubiquinone Oxidoreductase
MT-ND6	Core Subunit 6
EDNRB	Endothelin Receptor Type B
NES	Nestin
MROS	Melkersson-Rosenthal Syndrome
ICAM1	Intercellular Adhesion Molecule 1
AIF1	Allograft Inflammatory Factor 1
	Mitochondrially Encoded NADH:Ubiquinone Oxidoreductase
MT-ND5	Core Subunit 5
KCNQ1	Potassium Voltage-Gated Channel Subfamily Q Member 1
GDNF	Glial Cell Derived Neurotrophic Factor
CXCR4	C-X-C Motif Chemokine Receptor 4
CD40LG	CD40 Ligand
NGB	Neuroglobin
GJA1	Gap Junction Protein Alpha 1
SERPINI1	Serpin Family I Member 1
GP6	Glycoprotein VI Platelet
MIR21	MicroRNA 21
TBXA2R	Thromboxane A2 Receptor
HBA1	Hemoglobin Subunit Alpha 1
ANXA5	Annexin A5
APOA1	Apolipoprotein A1
COL4A2	Collagen Type IV Alpha 2 Chain
TSPO	Translocator Protein
FABP3	Fatty Acid Binding Protein 3
SRC	SRC Proto-Oncogene, Non-Receptor Tyrosine Kinase
MALAT1	Metastasis Associated Lung Adenocarcinoma Transcript 1
SLC6A4	Solute Carrier Family 6 Member 4
ADORA2A	Adenosine A2a Receptor
BMP7	Bone Morphogenetic Protein 7
SIRT1	Sirtuin 1
AOC3	Amine Oxidase Copper Containing 3
GATA4	GATA Binding Protein 4
COL3A1	Collagen Type III Alpha 1 Chain
SERPINF2	Serpin Family F Member 2
APOC3	Apolipoprotein C3
TNNT2	Troponin T2, Cardiac Type
	110polini 12, Calulac Type

ATP1A2	ATPase Na+/K+ Transporting Subunit Alpha 2
ITGB3	Integrin Subunit Beta 3
POMC	Proopiomelanocortin
ENTPD1	Ectonucleoside Triphosphate Diphosphohydrolase 1
AGTR2	Angiotensin II Receptor Type 2
MAPK3	Mitogen-Activated Protein Kinase 3
CALR	Calreticulin
MT-CO1	Mitochondrially Encoded Cytochrome C Oxidase I
IGF1	Insulin Like Growth Factor 1
TGFBR1	Transforming Growth Factor Beta Receptor 1
FGB	Fibrinogen Beta Chain
PRNP	Prion Protein
ARSA	Arylsulfatase A
ADORA3	Adenosine A3 Receptor
POLG	DNA Polymerase Gamma, Catalytic Subunit
DCX	Doublecortin
CXCL8	C-X-C Motif Chemokine Ligand 8
BACE1	Beta-Secretase 1
NFE2L2	Nuclear Factor, Erythroid 2 Like 2
TNFRSF12A	TNF Receptor Superfamily Member 12A
PTGS2	Prostaglandin-Endoperoxide Synthase 2
KNG1	Kininogen 1
VCAM1	Vascular Cell Adhesion Molecule 1
CYP11B2	Cytochrome P450 Family 11 Subfamily B Member 2
F9	Coagulation Factor IX
NR3C1	Nuclear Receptor Subfamily 3 Group C Member 1
MIR15A	MicroRNA 15a
JAG1	Jagged Canonical Notch Ligand 1
CYP2C9	Cytochrome P450 Family 2 Subfamily C Member 9
MIAT	Myocardial Infarction Associated Transcript
NTF3	Neurotrophin 3
CASP9	Caspase 9
GBA	Glucosylceramidase Beta
TGFB1	Transforming Growth Factor Beta 1
PPIG	Peptidylprolyl Isomerase G
SERPIND1	Serpin Family D Member 1
MPL	MPL Proto-Oncogene, Thrombopoietin Receptor
EPO	Erythropoietin
FLT1	Fms Related Receptor Tyrosine Kinase 1
ТНРО	Thrombopoietin
MMP3	Matrix Metallopeptidase 3
CCM2	CCM2 Scaffold Protein
MT-ATP6	Mitochondrially Encoded ATP Synthase Membrane Subunit 6
GSR	Glutathione-Disulfide Reductase
USI	

LPL	Lipoprotein Lipase						
RTN4	Reticulon 4						
ACTB	Actin Beta						
KIT	KIT Proto-Oncogene, Receptor Tyrosine Kinase						
CYP2C19	Cytochrome P450 Family 2 Subfamily C Member 19						
FGF2	Fibroblast Growth Factor 2						
MIR155	MicroRNA 155						
TGFB3	Transforming Growth Factor Beta 3						
GHRL	Ghrelin And Obestatin Prepropeptide						
LIPC	Lipase C, Hepatic Type						
IL4	Interleukin 4						
ADD1	Adducin 1						
RBFOX3	RNA Binding Fox-1 Homolog 3						
МРО	Myeloperoxidase						
PDE5A	Phosphodiesterase 5A						
SMAD4	SMAD Family Member 4						
SLC2A10	Solute Carrier Family 2 Member 10						
TSPAN33	Tetraspanin 33						
F12	Coagulation Factor XII						
MMP2	Matrix Metallopeptidase 2						
GJA5	Gap Junction Protein Alpha 5						
HSPA1A	Heat Shock Protein Family A (Hsp70) Member 1A						
LEP	Leptin						
HIF1A	Hypoxia Inducible Factor 1 Subunit Alpha						
PDE3A	Phosphodiesterase 3A						
IL18	Interleukin 18						
TET2	Tet Methylcytosine Dioxygenase 2						
ADRB3	Adrenoceptor Beta 3						
MYBPC3	Myosin Binding Protein C3						
GFAP	Glial Fibrillary Acidic Protein						
ITGAM	Integrin Subunit Alpha M						
DARS2	Aspartyl-TRNA Synthetase 2, Mitochondrial						
СР	Ceruloplasmin						
NOS1	Nitric Oxide Synthase 1						
CALCA	Calcitonin Related Polypeptide Alpha						
F8	Coagulation Factor VIII						
TTN	Titin						
	Transient Receptor Potential Cation Channel Subfamily V						
TRPV4	Member 4						
DRD4	Dopamine Receptor D4						
CBS	Cystathionine Beta-Synthase						
СЕТР	Cholesteryl Ester Transfer Protein						
AMPD1	Adenosine Monophosphate Deaminase 1						
MFAP5	Microfibril Associated Protein 5						
CYP3A5	Cytochrome P450 Family 3 Subfamily A Member 5						

ACED	Advanced Clysecovlation End Duedvet Succific Decenter
AGER HSD11B2	Advanced Glycosylation End-Product Specific Receptor
	Hydroxysteroid 11-Beta Dehydrogenase 2
KCNA5	Potassium Voltage-Gated Channel Subfamily A Member 5 Catalase
CAT TNDU2	
TNNI3	Troponin I3, Cardiac Type
MT-CO3	Mitochondrially Encoded Cytochrome C Oxidase III
IRS1	Insulin Receptor Substrate 1
ITGA2B	Integrin Subunit Alpha 2b
NGF	Nerve Growth Factor
NPY	Neuropeptide Y
GATA6	GATA Binding Protein 6
MAT2A	Methionine Adenosyltransferase 2A
FOXE3	Forkhead Box E3
CCR2	C-C Motif Chemokine Receptor 2
HMOX1	Heme Oxygenase 1
KCNJ5	Potassium Inwardly Rectifying Channel Subfamily J Member 5
MC4R	Melanocortin 4 Receptor
KRAS	KRAS Proto-Oncogene, GTPase
NEFL	Neurofilament Light
ALDH2	Aldehyde Dehydrogenase 2 Family Member
ECE1	Endothelin Converting Enzyme 1
TIMP1	TIMP Metallopeptidase Inhibitor 1
SCNN1A	Sodium Channel Epithelial 1 Subunit Alpha
HP	Haptoglobin
CSF3	Colony Stimulating Factor 3
ITGA2	Integrin Subunit Alpha 2
ACHE	Acetylcholinesterase (Cartwright Blood Group)
MIR143	MicroRNA 143
PTGS1	Prostaglandin-Endoperoxide Synthase 1
TYR	Tyrosinase
HBB	Hemoglobin Subunit Beta
CYP11B1	Cytochrome P450 Family 11 Subfamily B Member 1
FLNA	Filamin A
PCNT	Pericentrin
ENPP1	Ectonucleotide Pyrophosphatase/Phosphodiesterase 1
PRKAG2	Protein Kinase AMP-Activated Non-Catalytic Subunit Gamma 2
SLC2A4	Solute Carrier Family 2 Member 4
MIR146A	MicroRNA 146a
PKD1	Polycystin 1, Transient Receptor Potential Channel Interacting
IAPP	Islet Amyloid Polypeptide
PROC	Protein C, Inactivator Of Coagulation Factors Va And VIIIa
IL17A	Interleukin 17A
KCNJ11	Potassium Inwardly Rectifying Channel Subfamily J Member 11
WFS1	Wolframin ER Transmembrane Glycoprotein
WISI	

MIR17	MicroRNA 17
CORIN	Corin, Serine Peptidase
PRL	Prolactin
INSR	Insulin Receptor
MIR145	MicroRNA 145
MIR208A	MicroRNA 208a
KDR	Kinase Insert Domain Receptor
F13A1	Coagulation Factor XIII A Chain
CX3CR1	C-X3-C Motif Chemokine Receptor 1
CPS1	Carbamoyl-Phosphate Synthase 1
TNFRSF11B	TNF Receptor Superfamily Member 11b
XDH	Xanthine Dehydrogenase
NCF1	Neutrophil Cytosolic Factor 1
MYD88	MYD88 Innate Immune Signal Transduction Adaptor
GPT	GlutamicPyruvic Transaminase
TLR2	Toll Like Receptor 2
GRIN2A	Glutamate Ionotropic Receptor NMDA Type Subunit 2A
NAGS	N-Acetylglutamate Synthase
ADRB1	Adrenoceptor Beta 1
CDK5	Cyclin Dependent Kinase 5
MIR132	MicroRNA 132
KLKB1	Kallikrein B1
MMP1	Matrix Metallopeptidase 1
OTC	Ornithine Carbamoyltransferase
IL2	Interleukin 2
BRCA2	BRCA2 DNA Repair Associated
ATM	ATM Serine/Threonine Kinase
MTR	5-Methyltetrahydrofolate-Homocysteine Methyltransferase
PLA2G2A	Phospholipase A2 Group IIA
INF2	Inverted Formin, FH2 And WH2 Domain Containing
CELA2A	Chymotrypsin Like Elastase 2A
DRD1	Dopamine Receptor D1
PPARA	Peroxisome Proliferator Activated Receptor Alpha
GNAS	GNAS Complex Locus
SON	SON DNA Binding Protein
FCGR2A	Fc Fragment Of IgG Receptor IIa
CACNA1A	Calcium Voltage-Gated Channel Subunit Alpha1 A
EPHX2	Epoxide Hydrolase 2
MYMY1	Moyamoya Disease 1
MYMY3	Moyamoya Disease 3
CD14	CD14 Molecule
MEN1	Menin 1
COMT	Catechol-O-Methyltransferase
GCKR	Glucokinase Regulator

CYBA	Cytochrome B-245 Alpha Chain
ITGB2	Integrin Subunit Beta 2
LCN2	Lipocalin 2
CCND1	Cyclin D1
HSPA5	Heat Shock Protein Family A (Hsp70) Member 5
ATP1A3	ATPase Na+/K+ Transporting Subunit Alpha 3
CCR5	C-C Motif Chemokine Receptor 5 (Gene/Pseudogene)
ZMPSTE24	Zinc Metallopeptidase STE24
GGT1	Gamma-Glutamyltransferase 1
FOS	Fos Proto-Oncogene, AP-1 Transcription Factor Subunit
IL1RN	Interleukin 1 Receptor Antagonist
PTPN1	Protein Tyrosine Phosphatase Non-Receptor Type 1
SCN1A	Sodium Voltage-Gated Channel Alpha Subunit 1
IRS2	Insulin Receptor Substrate 2
ACAN	Aggrecan
ELP1	Elongator Complex Protein 1
TNFSF4	TNF Superfamily Member 4
STAT3	Signal Transducer And Activator Of Transcription 3
S100B	S100 Calcium Binding Protein B
NLRP3	NLR Family Pyrin Domain Containing 3
GCGR	Glucagon Receptor
COL4A5	Collagen Type IV Alpha 5 Chain
SCNN1B	Sodium Channel Epithelial 1 Subunit Beta
MT-CO2	Mitochondrially Encoded Cytochrome C Oxidase II
BCL2L1	BCL2 Like 1
CTF1	Cardiotrophin 1
VDR	Vitamin D Receptor
ERAP1	Endoplasmic Reticulum Aminopeptidase 1
ASS1	Argininosuccinate Synthase 1
TAC1	Tachykinin Precursor 1
PVALB	Parvalbumin
MTOR	Mechanistic Target Of Rapamycin Kinase
SCNN1G	Sodium Channel Epithelial 1 Subunit Gamma
HHT4	Telangiectasia, Hereditary Hemorrhagic, Type 4
EGF	Epidermal Growth Factor
IFNG	Interferon Gamma
SCN8A	Sodium Voltage-Gated Channel Alpha Subunit 8
ITPR1	Inositol 1,4,5-Trisphosphate Receptor Type 1
NAMPT	Nicotinamide Phosphoribosyltransferase
PDGFRA	Platelet Derived Growth Factor Receptor Alpha
	Potassium Calcium-Activated Channel Subfamily M Regulatory
KCNMB1	Beta Subunit 1
CYP4F2	Cytochrome P450 Family 4 Subfamily F Member 2
CSF2	Colony Stimulating Factor 2
APOA5	Apolipoprotein A5

SLC1A3	Solute Carrier Family 1 Member 3
BGN	Biglycan
C3	Complement C3
NPR3	Natriuretic Peptide Receptor 3
ADD3	Adducin 3
DES	Desmin
ATP1B1	ATPase Na+/K+ Transporting Subunit Beta 1
PKD2	Polycystin 2, Transient Receptor Potential Cation Channel
CSTB	Cystatin B
MIR33A	MicroRNA 33a
CYP3A4	Cytochrome P450 Family 3 Subfamily A Member 4
DRD2	Dopamine Receptor D2

Table S3. Ischemia-related targets that were predicted to be inhibited by the reviewed compounds. Interactions with blue-colored targets were validated by MDS and $\Delta G_{\text{binding}}$ calculation.

Compounds	SwissPrediction		Iı	iverse Docking	2		Literature								
Epigallocatechin		PIK3CA	MAPK3	MMP1	MMP2	JAK2									
gallate	MAPT	(PDB:6GVF)	(PDB:2ZOQ)	(PDB:3AYK)	(PDB:1HOV)	(PDB:3E64)	PIK3CA								
		PIK3CA	NOS1	MAPK3	JAK2										
Hesperetin		(PDB:6GVF)	(PDB:4D1N)	(PDB:2ZOQ)	(PDB:3E64)										
		PIK3CA	NOS1	XOR	MAPK3	JAK2									
Apigenin	CDK5	(PDB:6GVF)	(PDB:4D1N)	(PDB:3B9J)	(PDB:2ZOQ)	(PDB:3E64)									
		PIK3CA	NOS1	XOR	MAPK3	JAK2									
Quercetin		(PDB:6GVF)	(PDB:4D1N)	(PDB:3B9J)	(PDB:2ZOQ)	(PDB:3E64)	NOS1	XOR							
Hesperidin					10000 - 100 MO		PIK3CA								
		PIK3CA	MAPK3	JAK2											
Resveratrol		(PDB:6GVF)	(PDB:2ZOQ)	(PDB:3E64)			MPO	TLR4	TNF	MMP9	HMGB1				
		MAPK3													
Silibinin		(PDB:2ZOQ)	()				TNF	SOD							
(Z)-Ligustilide							SOD	HSPA5	MMP2	MMP9					
Thymoquinone							XOR								
and the second		HMGCR													
Tanshinone IIA		(PDB:3CCZ)					MPO	TNF	IL1B	IL6	NOS1	MAPK3	IL10	TLR4	TGFB2
And the second second		SQLE													
Salvianolic acid A		(PDB:6C6N)					MMP9	GPX1	TNF	IL1B	IL6		· · · ·		
Salvianolic acid B			2				TNF	IL1B	SIRT1			PIK3CA			
Curcumin			2				XOR	SOD	NOS1	HSPA5	TLR4	MAPK3			
Crocin			6. B				PIK3CA	SOD	GPX1	MAPK3	NOX1	HMGB1			
Picroside II			9				TLR4	GPX1	SOD	XOR	NOX1	MPO			
Glycyrrhizin							TNF	IL1B	IL6				c		
Ginsenoside rb1							MMP9	NOS1	NOX1	PIK3CA	SOD				
Ginsenoside Rd			2				PIK3CA	MMP9							
Ginsenoside RG1							MAPK3	HMGB1	TLR4	RhoA	MPO	SOD	CAT		
Notoginsenoside R1			s				PIK3CA	IL6	TNF						

Description	Number of genes	FDR value	Genes
Blood circulation	14	3.34E-07	PIK3C2A GJA1 MAPK3 OLR1 LEP F2R LPA SERPINF2 ADORA2A ADRB3 PDE4D MTOR ADRB1 SOD
Cardiovascular system disease	10	1.10E-05	MAPT PIK3C2A IL10 TGFB2 IL6 GPX1 IL1B XOR MP0 SOD
Vascular disease	9	1.92E-04	TGFB2 XOR MPO PIK3C2A MAPK3 FLT1 S100B LPA MYLK
Regulation of blood vessel diameter	7	1.59E-06	PIK3C2A GPX1 XOR SOD NTF3 MYD88 TRPV4
Aging	7	3.11E-03	NOX1 MPO SOD PRNP BRCA2 NFE2L2 SOD2
Artery disease	7	9.20E-03	MPO IL1B IL6 TGFB2 IL10 ITGA2B LPA
Regulation of blood pressure	7	8.35E-03	ADRB3 PDE4D ADRB1 SOD GJA1 PPARG LEP
Cholesterol metabolism	3	1.46E-02	SQLE HMGCR MAPK3

Table S4. KEGG signaling pathway enrichment

No.	Compound	GIT Absorption	BBB Permeability	Bioavailability score	Lipinski
	Ι	. Bioactives for man	agement of cerebra	lischemia	
1	Totarol (Terpenoid)	High	Yes	0.55	Yes
2	Taraxasterol (Terpenoid)	High	Yes	0.55	Yes
4	Resveratrol (Terpenoid)	High	Yes	0.55	Yes
5	Celastrol (Terpenoid)	High	Yes	0.55	No
6	Asiatic acid (Terpenoid)	High	Yes	0.55	Yes
7	11-Keto-β- boswellic acid terpenoid	High	Yes	0.55	Yes
8	Acetyl-11-Keto- β-boswellic acid (Terpenoid)	High	Yes	0.55	Yes
9	Andrographolide (Terpenoid)	High	Yes	0.55	Yes
10	Parthenolide (Terpenoid)	High	Yes	0.55	No
11	Ursolic acid (Terpenoid)	High	Yes	0.55	Yes
12	Bilobalide (Terpenoid)	High	Yes	0.55	Yes
13	Nomilin (Terpenoid)	High	Yes	0.55	No
14	Paeoniflorin (Terpenoid)	Low	Yes	0.55	No
15	Carnosic acid (Terpenoid)	Low	Yes	0.55	No
16	Linalool terpenoid	High	Yes	0.55	Yes
17	Senkyunolide I (Terpene)	Low	Yes	0.55	No
18	Tanshinone A	High	Yes	0.55	Yes

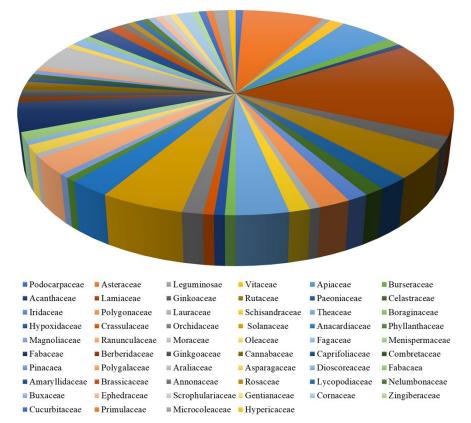
Table S5: Calculated pharmacokinetics and bioavailability properties of the reviewed compounds

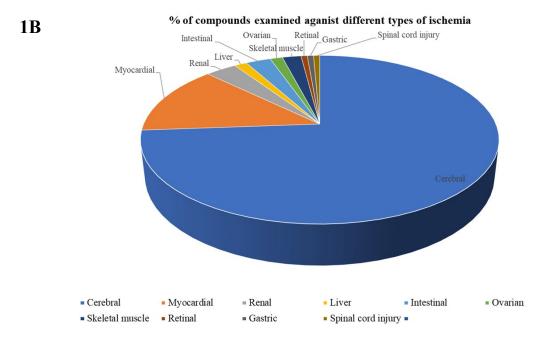
	(Terpenoid)				
19	Ligustrazine (Terpenoid)	High	Yes	0.55	Yes
20	Z-ligustilide (Terpenoid)	High	Yes	0.55	Yes
21	Triptolide (Terpenoid)	High	Yes	0.55	Yes
22	Safranal (Terpenoid)	High	Yes	0.55	Yes
23	Britanin (Terpenoid)	High	Yes	0.55	Yes
24	Ginkgolide K (Terpenoid)	Low	No	0.55	No
25	Salvianolic acid A (Phenolic)	Low	No	0.55	No
26	Emodin (Phenolic)	High	Yes	0.55	Yes
27	Magnesium lithospermate B (Phenolic)	Low	No	0.55	No
28	2,3,5,4'-Tetra hydroxystilbene- 2-O -β-D- glucoside (Phenolic)	High	Yes	0.55	Yes
29	Paeonol (Phenolic)	High	Yes	0.55	Yes
30	Osthole (Phenolic)	High	Yes	0.55	Yes
31	Tetrahydroxystil bene (Phenolic)	High	Yes	0.55	Yes
32	Cinnamophilin neolignane (Phenolic)	High	Yes	0.55	Yes
33	Cinnamophilin (phenolic)	High	Yes	0.55	Yes
34	Schisandrin B (Phenolic)	High	Yes	0.55	Yes

35	Epigallocatechin gallate (Phenolic)	High	Yes	0.55	Yes
36	Shikonin (Phenolic)	High	Yes	0.55	Yes
37	Paeonol (Phenolic)	High	Yes	0.55	Yes
38	Curculigoside A (Phenolic)	High	Yes	0.55	Yes
39	Theaflavin (Phenolic)	High	Yes	0.55	Yes
40	Salidroside (Phenolic)	High	Yes	0.55	Yes
41	Gastrodin (Phenolic)	High	Yes	0.55	Yes
42	Rosmarinic acid (Phenolic)	Low	No	0.55	No
43	Lyciumamide A (Phenolic)	High	Yes	0.55	Yes
44	Mangiferin Xanthone, (Phenolic)	High	Yes	0.55	Yes
45	Procyanidin B2 (Phenolic)	High	Yes	0.55	Yes
46	Chlorogenic acid (Phenolic)	Low	No	0.55	No
47	Corilagin (Phenolic)	High	Yes	0.55	Yes
48	Alpha tocopherol (Phenolic)	High	Yes	0.55	Yes
49	Gallic acid (Phenolic)	Low	No	0.55	No
50	Honokiol (Phenolic)	High	Yes	0.55	Yes
51	Salvianolic acid B, (phenolic)	High	Yes	0.55	Yes
52	4-OH-benzyl alcohol (Phenolic)	High	Yes	0.55	Yes
53	Theaflavin	Low	No	0.55	No

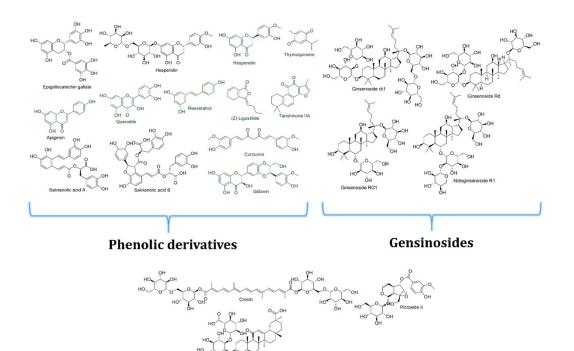
	(Phenolic)				
54	4'- geranyloxyferuli c acid. (Phenolic)	High	Yes	0.55	Yes
55	Hydroxysafflor yellowA (Phenolic)	High	Yes	0.55	Yes
56	Schizandrin A (Phenolic)	Low	No	0.55	No
57	Forsythiaside A (Phenolic)	High	Yes	0.55	Yes
58	Trilobatin (Phenolic)	High	Yes	0.55	Yes
59	Ferulic acid (Phenolic)	High	Yes	0.55	Yes
60	Lithospermic acid (Phenolic)	Low	No	0.55	No
61	Epicatechin (Flavonoid)	High	Yes	0.55	Yes
62	Isoliquiritigenin (Flavonoid)	High	Yes	0.55	Yes
63	Gardenin (Flavonoid)	Low	No	0.55	No
64	Scutellarin (Flavonoid)	High	Yes	0.55	Yes
65	Icaritin (Flavonoid)	High	Yes	0.55	Yes
66	Nobiletin (Flavonoid)	High	Yes	0.55	Yes
67	Apigenin-7-O-β- D-(-6"-p- coumaroyl)- glucopyranoside (Flavonoid)	Low	No	0.55	No
68	Myricetin (Flavonoid)	High	Yes	0.55	Yes
69	Silibinin-C-2',3- bis hydrogensuccina	High	Yes	0.55	Yes

	t				
	(Flavonoid)				
70	Butein (Flavonoid)	High	Yes	0.55	No
71	Wogonin (Flavonoid)	High	Yes	0.55	Yes
72	Isoquercetin (Flavonoid)	High	Yes	0.55	Yes
73	6"-O- succinylapigenin (Flavonoid)	Low	No	0.55	No
74	Luteoloside (Flavonoid)	High	Yes	0.55	Yes
75	Biochanin A (Flavonoid)	High	Yes	0.55	Yes
76	Xanthohumol (Flavonoid)	Low	No	0.55	No
77	Galuteolin (Flavonoid)	High	Yes	0.55	Yes
78	Isoquercetin (Flavonoid)	High	Yes	0.55	Yes
79	Baicalein (Flavonoid)	High	Yes	0.55	Yes
80	Baicalin (Flavonoid)	Low	No	0.55	No
81	Xanthohumol (Chalcone, flavonoid)	High	Yes	0.55	Yes
82	Naringenin (Flavonoid)	High	Yes	0.55	Yes
83	Puerarin (Flavonoid)	High	Yes	0.55	Yes
84	Calycosin (Favonoid)	High	Yes	0.55	Yes
85	Calycosin-7-o-ß- d-glucoside (Flavonoid)	Low	No	0.55	No
86	Lutein (Flavonoid)	High	Yes	0.55	Yes
87	Apigenin (Flavonoid)	High	Yes	0.55	Yes
88	Breviscapine	Low	No	0.55	No


	(Flavone)				
89	Silibinin (Flavonoid)	High	Yes	0.55	Yes
90	5,7,3',4',5'- pentahydroxy dihydroflavanol- 3O-(2''-O- galloyl)-β-D- glucopyranoside (Flavonoid)	High	Yes	0.55	Yes
91	Anthocyanin (Flavonoid)	High	Yes	0.55	Yes
92	Genistein (Flavonoid)	Low	No	0.55	No
93	Equol (4', 7 isoflavandiol) (flavonoid)	High	Yes	0.55	Yes
94	Luteolin (Flavonoid)	High	Yes	0.55	Yes
95	Polygalasaponin F (Saponin)	High	Yes	0.55	Yes
96	Ruscogenin (Saponin)	High	Yes	0.55	Yes
97	Dioscin (Saponin)	Low	No	0.55	No
98	Diosgenin (Saponin)	High	Yes	0.55	Yes
99	Glycyrrhizin (Saponin)	Low	No	0.55	No
100	S-allyl cysteine (Sulphur containing compound)	High	Yes	0.55	Yes
101	(DATs) di-allyl trisulfide (Sulphur containing compound)	High	Yes	0.55	Yes
102	3H-1,2-dithiole-	High	Yes	0.55	Yes


	3- (Sulphur				
	containing				
	compound)				
103	Sulforaphane (Sulphur containing compound)	High	Yes	0.55	Yes
104	Lipoic acid (Sulphur containing compound)	Low	No	0.55	No
105	Allicin (Sulphur containing compound)	High	Yes	0.55	Yes
106	Guattegaumerine (Alkaloid)	High	Yes	0.55	Yes
107	Spiramin T (Alkaloid)	Low	No	0.55	No
108	Huperzine A (Alkaloid)	High	Yes	0.55	Yes
109	Sinomenine, (alkaloid)	High	Yes	0.55	Yes
110	Leonurine (Alkaloid)	High	Yes	0.55	Yes
111	Neferine (Alkaloid)	Low	No	0.55	No
112	Ephedrine (Alkaloid)	High	Yes	0.55	Yes
113	Swertiamarin (Iridoid)	High	Yes	0.55	Yes
114	Cornel (Iridoid)	High	Yes	0.55	Yes
115	Cornin (Iridoid)	High	Yes	0.55	Yes
116	Jasminoidin (Iridoid)	Low	No	0.55	No
117	Beta carotene (Carotenoid)	High	Yes	0.55	Yes
118	b-cryptoxanthin (Carotenoid)	Low	No	0.55	No

119	Zeaxanthin	High	Yes	0.55	Yes
120	(Carotenoid) Astaxanthin	High	Yes	0.55	Yes
120	(Carotenoid)	Ingh	105	0.55	105
121	Dihydrocapsaici	High	Yes	0.55	Yes
	n (Carotenoid)				
122	Crocin	High	Yes	0.55	Yes
	(Carotenoid)	8			
123	Polysaccharides	Low	No	0.55	No
	(Miscellaneous)				
124	Ginkgolide B (Miscellaneous)	High	Yes	0.55	Yes
125	Oleuropein (Miscellaneous)	High	Yes	0.55	Yes
126	Embelin (Miscellaneous)	Low	No	0.55	No
127	Phycocyanobilin (Miscellaneous)	High	Yes	0.55	Yes
128	Hyperforin (Miscellaneous)	High	Yes	0.55	Yes
129	Withaferin A (Miscellaneous)	High	Yes	0.55	Yes
130	Carnosine (Miscellaneous)	High	Yes	0.55	Yes
131	Phycocyanobilin	High	Yes	0.55	Yes
II.	(Miscellaneous)	nagement of myo	cardial ischemia		
	1				
132	Astragaloside (Terpenoid)	Low	No	0.55	No
133	Protocatechualde hyde (Phenolic)	High	Yes	0.55	Yes
134	Cyanidin-3-O-D- glucopyranoside (Phenolic)	High	Yes	0.55	Yes
135	Tetrandrine (Phenolic)	Low	No	0.55	No


136	Fisetin	High	Yes	0.55	Yes
	(Flavonoid)				
137	Palmatine,	High	Yes	0.55	Yes
	(Flavonoid)				
138	Isorhamnetin	High	Yes	0.55	Yes
	(Flavonoid)				
139	Pinocembrin	High	Yes	0.55	Yes
	(Flavonoid)				
140	Berberine,	High	Yes	0.55	Yes
	(Alkaloid)				
141	Cyclobuxine	High	Yes	0.55	Yes
	(Alkaloid)				
142	Picroside II	Low	No	0.55	Yes
	(Iridoid)				
143	Lycopene	High	Yes	0.55	Yes
	(Carotenoid)				

No. of compounds extracted from each plant source

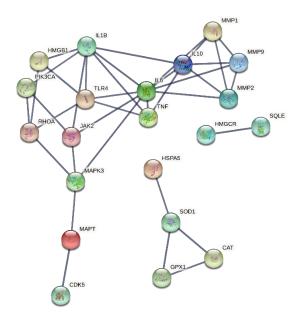
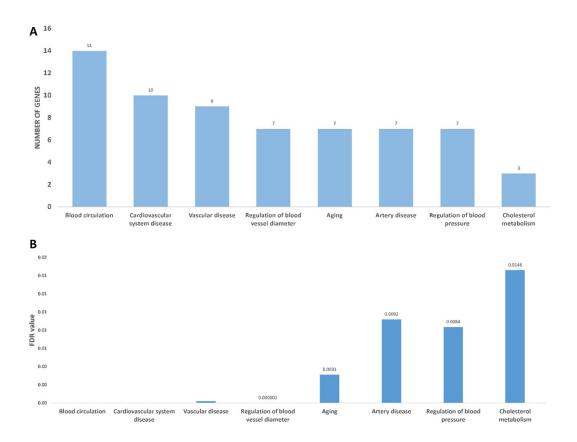


Figure S1 Plant families reported to contain anti-ischemic bioactives (A) and the relative number of bioactives examined against different types of ischemia (B).



Miscellaneous

Figure S2. Anti-ischemic natural products collected from literature in the present review. Greencolored compounds have drug-like properties according to Lipinski's and Veber's rules of druglikeness.

Figure S3. Sub-PPI network constructed from proteins predicted and/or reported to be targeted by the collected natural products in the present investigation. This network consists of 21 nodes and 37 edges with an average node degree of 2.47.

Figure S4. KEGG pathway enrichment. (A) *X*-axis is enrichment gene count, *Y*-axis is KEGG pathway. (B) False discovery rate (FDR) of each annotated pathway.

Experimental

1. Target Proteins of ischemia

Ischemia-related target proteins (**Table S2**) were retrieved from the publicly available databases: GeneCards (https://www.genecards.org/; accessed on 22 August 2021) [142]. The words "myocardial ischemia, and cerebral ischemia" were used as the keywords, and the species was set as "*Homo sapiens*". Additionally, literature form 1990 until 2021 were reviewed for additional targets related both myocardial and cerebral ischemia. Google scholar was used for this literature review- based search using the same keywords: myocardial ischemia, and cerebral ischemia.

2. Determination of the Potential Protein Targets for the most prominent 20 compounds

The potential protein targets for the most prominent 20 compounds were proposed by subjecting all of these compounds structures to inverse docking against all proteins hosted in the Protein Data Bank (PDB; https://www.rcsb.org/). The idTarget platform (http://idtarget.rcas.sinica.edu.tw/) was used for this task. This structure-based screening software applies a unique docking approach called divide-and-conquer docking that adaptively builds small overlapping grids to make the searching space on the protein surfaces more constrained. Hence, it can run a huge number of accurate docking experiments in a much-reduced time [143]. The retrieved results were obtained as a list of binding affinity scores arranged from the highest negative to the lowest. We set a binding affinity score of -7 kcal/mol as a cut-off value to select the best targets for each compound structure. Considering the collected human myocardial and cerebral ischemia-related proteins, 9 protein targets were obtained for the selected 20 compounds.

Another pharmacophore-based virtual screening platform called SwissTargetPrediction (http://www.swisstargetprediction.ch/) [144] was used to predict potential targets for the same

compounds. The species was set as "*Homo sapiens*" and a probability score of 100% was set a s acut-off value.

3. Networks Construction and Functional Enrichment Analysis Three types of networks were generated: (i) a network of compound-protein-pathway interactions (CPPI) based on the prediction results. Links between the selected 20 compounds and ischemiarelated target proteins were generated in this network; (ii) a protein-protein interaction (PPI) network summarizing interactions between ischemia-relevant proteins. The proteins that were predicted to be probable targets for the selected compounds were submitted to the STRING database (https://string-db.org/) [145] for protein-protein interaction (PPI) analysis, where "Homo sapiens" was set as the search species, the interaction score was set to 0.9 (the maximum confidence), and the rest of the parameters were selected according to the default setting; (iii) a protein-pathway interaction network that showed the interactions between ischemia-related proteins and their associated signaling pathways. This network was constructed after KEGG pathway enrichment analysis. All the aforementioned networks were built using the Cytoscape 3.9.2 (https://www.cytoscape.org/) [146] network visualization and analysis software tool. The pre-installed tools carried out functional enrichment analysis and KEGG pathway annotation for ischemia-relevant targets in Cytoscape 3.9.2.

4. Molecular Dynamics Simulation

Desmond v. 2.2 software was used for performing MDS experiments [147–149]. This software applies the OPLS force field. Protein systems were built using the System Builder option, where the protein structure was embedded in an orthorhombic box of TIP3P water together with 0.15 M Na⁺ and Cl⁻ ions in 20 Å solvent buffer. Afterward, the prepared systems were energy minimized and equilibrated for 10 ns. Desmond software automatically parameterizes inputted ligands during the system building step according to the OPLS force field. Metal-containing proteins like MMPs that contain histidine-Zn⁺² complex in the active site should be parameterized during the protein preparation step. To do so, a hetero state should be generated for hetero atoms like Zn (Generate Hetero States). This function is a part of the maestro's Protein Preparation wizard. This step will enable the formation of a suitable hetero state or co-ordinate covalent state for the heteroatom (i.e. Zn^{+2}) in complex with the protein so that force fields like OPLS can easily recognize the zinc atom. For simulations performed by NAMD [150], the parameters and topologies of the compounds were calculated either using the Charmm27 force field with the online software

Ligand Reader and Modeler (http://www.charmm-gui. org/?doc=input/ligandrm) [151] or using the VMD plugin Force Field Toolkit (ffTK). Afterward, the generated parameters and topology files were loaded to VMD to readily read the protein–ligand complexes without errors and then conduct the simulation step. For MMPs, harmonic Tcl forces were applied to keep Zn⁺² in place.

5. Binding Free Energy Calculations

Binding free energy calculations (ΔG) were performed using the free energy perturbation (FEP) method [150]. This method was described in detail in the recent article by Kim and coworkers [150]. Briefly, this method calculates the binding free energy $\Delta G_{\text{binding}}$ according to the following equation: $\Delta G_{\text{binding}} = \Delta G_{\text{Complex}}$ - ΔG_{Ligand} . The value of each ΔG is estimated from a separate simulation using NAMD software. Interestingly, all input files required for simulation by NAMD CharmmGUI online website can be papered by using the (https://charmm gui.org/?doc=input/afes.abinding). Subsequently, we can use these files in NAMD to produce the required simulations using the FEP calculation function in NAMD. The equilibration was achieved in the NPT ensemble at 300 K and 1 atm (1.01325 bar) with Langevin piston pressure (for "Complex" and "Ligand") in the presence of the TIP3P water model. Then, 10 ns FEP simulations were performed for each compound, and the last 5 ns of the free energy values was measured for the final free energy values [150]. Finally, the generated trajectories were visualized and analyzed using VMD software.

References

- 1. Tao, T., et al., *Natural medicine in neuroprotection for ischemic stroke: Challenges and prospective.* Pharmacology & Therapeutics, 2020: p. 107695.
- 2. He, Y., K. Jiang, and X. Zhao, *Taraxasterol protects hippocampal neurons from oxygenglucose deprivation-induced injury through activation of Nrf2 signalling pathway.* Artificial cells, nanomedicine, and biotechnology, 2020. **48**(1): p. 252-258.
- 3. Yang, D., W. Jia, and Y.Z. Zhu, *Leonurine, a potential agent of traditional Chinese medicine: recent updates and future perspectives.* Natural product communications, 2016. **11**(11): p. 1934578X1601101130.
- 4. Jiang, W.L., et al., *Cornin ameliorates cerebral infarction in rats by antioxidant action and stabilization of mitochondrial function*. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 2010. **24**(4): p. 547-552.
- 5. Wang, T., et al., *Protection by tetrahydroxystilbene glucoside against cerebral ischemia: involvement of JNK, SIRT1, and NF-κB pathways and inhibition of intracellular ROS/RNS generation.* Free Radical Biology and Medicine, 2009. **47**(3): p. 229-240.
- 6. Duan, Z.Z., et al., *Protection of Momordica charantia polysaccharide against intracerebral hemorrhage-induced brain injury through JNK3 signaling pathway.* J Recept Signal Transduct Res, 2015. **35**(6): p. 523-9.

- Dong, K., et al., *Neuroprotective effects of Tanshinone IIA on permanent focal cerebral ischemia in mice*. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 2009.
 23(5): p. 608-613.
- 8. Mahmood, Q., et al., *Salvianolic acid A inhibits calpain activation and eNOS uncoupling during focal cerebral ischemia in mice.* Phytomedicine, 2017. **25**: p. 8-14.
- 9. Ahn, S.M., et al., *Emodin from Polygonum multiflorum ameliorates oxidative toxicity in HT22 cells and deficits in photothrombotic ischemia*. Journal of Ethnopharmacology, 2016. **188**: p. 13-20.
- Yu, H., et al., Oleuropein, a natural extract from plants, offers neuroprotection in focal cerebral ischemia/reperfusion injury in mice. European Journal of Pharmacology, 2016. 775: p. 113-119.
- 11. Yang, G., et al., *Tetramethylpyrazine Protects Against Oxygen-Glucose Deprivation-Induced Brain Microvascular Endothelial Cells Injury via Rho/Rho-kinase Signaling Pathway*. Cellular and Molecular Neurobiology, 2017. **37**(4): p. 619-633.
- 12. Thippeswamy, B.S., et al., *Protective Effect of Embelin from Embelia ribes Burm. Against Transient Global Ischemia-Induced Brain Damage in Rats.* Neurotoxicity Research, 2011. **20**(4): p. 379.
- 13. Marín-Prida, J., et al., *Phycocyanobilin promotes PC12 cell survival and modulates immune and inflammatory genes and oxidative stress markers in acute cerebral hypoperfusion in rats.* Toxicology and Applied Pharmacology, 2013. **272**(1): p. 49-60.
- 14. Yang, Z.-B., et al., *Beneficial effect of magnesium lithospermate B on cerebral ischemia–reperfusion injury in rats involves the regulation of miR-107/glutamate transporter 1 pathway*. European Journal of Pharmacology, 2015. **766**: p. 91-98.
- Zhao, Y., et al., *Chrysophanol attenuates nitrosative/oxidative stress injury in a mouse model of focal cerebral ischemia/reperfusion*. Journal of Pharmacological Sciences, 2018. **138**(1): p. 16-22.
- 16. Li, Y., et al., Protective effect of celastrol in rat cerebral ischemia model: Downregulating p-JNK, p-c-Jun and NF- κ B. Brain Research, 2012. **1464**: p. 8-13.
- Hao, M., et al., *Triptolide Protects Against Ischemic Stroke in Rats*. Inflammation, 2015.
 38(4): p. 1617-1623.
- 18. Lee, T.H., C.H. Jung, and D.-H. Lee, *Neuroprotective effects of Schisandrin B against transient focal cerebral ischemia in Sprague–Dawley rats.* Food and Chemical Toxicology, 2012. **50**(12): p. 4239-4245.
- 19. Grewal, A.K., T.G. Singh, and N. Singh, *POTENTIAL HERBAL DRUGS FOR ISCHEMIC STROKE: A REVIEW.* Plant Archives, 2020. **20**(1): p. 3772-3783.
- 20. Ma, Y., J.C. Sullivan, and D.A. Schreihofer, *Dietary genistein and equol (4', 7 isoflavandiol) reduce oxidative stress and protect rats against focal cerebral ischemia.* American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2010. **299**(3): p. R871-R877.
- 21. Zahran, E.M., et al., *Diversity, phytochemical and medicinal potential of the genus Ocimum L.(Lamiaceae).* Phytochemistry Reviews, 2020. **19**: p. 907-953.
- 22. Ghosh, A., et al., *Neuroprotective role of nanoencapsulated quercetin in combating ischemia-reperfusion induced neuronal damage in young and aged rats.* PLoS One, 2013. **8**(4): p. e57735.
- 23. Zhang, Y.-C., et al., *Antioxidant and Nrf2 inducing activities of luteolin, a flavonoid constituent in Ixeris sonchifolia Hance, provide neuroprotective effects against ischemia-induced cellular injury.* Food and Chemical Toxicology, 2013. **59**: p. 272-280.

- Lee, E.J., et al., *Therapeutic window for cinnamophilin following oxygen–glucose deprivation and transient focal cerebral ischemia*. Experimental Neurology, 2009. 217(1): p. 74-83.
- 25. Albert, D., et al., *Hyperforin is a dual inhibitor of cyclooxygenase-1 and 5-lipoxygenase.* Biochemical Pharmacology, 2002. **64**(12): p. 1767-1775.
- 26. Zhu, J., et al., *Suppression of local inflammation contributes to the neuroprotective effect of ginsenoside Rb1 in rats with cerebral ischemia.* Neuroscience, 2012. **202**: p. 342-351.
- 27. Bae, E.-A., et al., *Ginsenosides Rg3 and Rh2 inhibit the activation of AP-1 and protein kinase A pathway in lipopolysaccharide/interferon-γ-stimulated BV-2 microglial cells.* Planta medica, 2006. **72**(07): p. 627-633.
- 28. Liu, X., et al., *Efficacy and safety of ginsenoside-Rd for acute ischaemic stroke: a randomized, double-blind, placebo-controlled, phase II multicenter trial.* European journal of neurology, 2009. **16**(5): p. 569-575.
- 29. Guan, T., et al., *Ruscogenin reduces cerebral ischemic injury via NF-κB-mediated inflammatory pathway in the mouse model of experimental stroke.* European Journal of Pharmacology, 2013. **714**(1): p. 303-311.
- Zhang, W.-D., et al., Astragaloside IV from Astragalus membranaceus shows cardioprotection during myocardial ischemia in vivo and in vitro. Planta medica, 2006. 72(01): p. 4-8.
- Bai, F., et al., *Free energy landscape for the binding process of Huperzine A to acetylcholinesterase*. Proceedings of the National Academy of Sciences, 2013. 110(11): p. 4273-4278.
- 32. Wu, W.N., et al., Sinomenine protects against ischaemic brain injury: Involvement of co-inhibition of acid-sensing ion channel 1a and L-type calcium channels. British journal of pharmacology, 2011. **164**(5): p. 1445-1459.
- 33. Bae, O.-N., et al., *Safety and efficacy evaluation of carnosine, an endogenous neuroprotective agent for ischemic stroke.* Stroke, 2013. **44**(1): p. 205-212.
- 34. Krishnamurthy, R.G., et al., *Asiatic acid, a pentacyclic triterpene from Centella asiatica, is neuroprotective in a mouse model of focal cerebral ischemia.* Journal of neuroscience research, 2009. **87**(11): p. 2541-2550.
- 35. Shati, A.A., *Xanthohumol protects against renal ischaemia reperfusion (I/R) injury by scavenging ROS and inhibition of JAK-2/STAT-3 inflammatory pathway.* Journal of Taibah University for Science, 2017. **11**(3): p. 458-470.
- 36. Raza, S.S., et al., *Neuroprotective effect of naringenin is mediated through suppression of NF-κB signaling pathway in experimental stroke.* Neuroscience, 2013. **230**: p. 157-171.
- 37. Zhu, S., S. Tang, and F. Su, *Dioscin inhibits ischemic stroke-induced inflammation through inhibition of the TLR4/MyD88/NF-κB signaling pathway in a rat model.* Molecular Medicine Reports, 2018. 17(1): p. 660-666.
- Zhang, Z.-j., et al., A comparative study on the individual and combined effects of baicalin and jasminoidin on focal cerebral ischemia-reperfusion injury. Brain Research, 2006. 1123(1): p. 188-195.
- 39. Jivad, N. and Z. Rabiei, *Review on herbal medicine on brain ischemia and reperfusion*. Asian Pacific Journal of Tropical Biomedicine, 2015. **5**(10): p. 789-795.
- 40. Gupta, Y.K., S. Briyal, and A. Gulati, *Therapeutic potential of herbal drugs in cerebral ischemia*. Indian J Physiol Pharmacol, 2010. **54**(2): p. 99-122.
- 41. Ergün, Y., et al., Antioxidant effect of Legalon (r) SIL in ischemia-reperfusion injury of rat skeletal muscle. Acta cirurgica brasileira, 2016. **31**(4): p. 264-270.
- 42. Al-Snafi, A.E., *The pharmacology of Crocus sativus-A review*. IOSR Journal of Pharmacy, 2016. **6**(6): p. 8-38.

- 43. Ma, S., et al., *Neuroprotective effect of ginkgolide K against acute ischemic stroke on middle cerebral ischemia occlusion in rats.* Journal of Natural Medicines, 2012. **66**(1): p. 25-31.
- 44. Ghosh, N., et al., *Advances in herbal medicine for treatment of ischemic brain injury*. Natural product communications, 2014. **9**(7): p. 1934578X1400900739.
- 45. Wu, J.-b., et al., *Protective effects of paeonol on cultured rat hippocampal neurons against oxygen–glucose deprivation-induced injury*. Journal of the neurological sciences, 2008. **264**(1-2): p. 50-55.
- 46. Cai, B., et al., *Therapeutic potential of diosgenin and its major derivatives against neurological diseases: recent advances.* Oxidative medicine and cellular longevity, 2020. **2020**.
- 47. Li, H., et al., *Carnosic acid nanoparticles suppress liver ischemia/reperfusion injury by inhibition of ROS, Caspases and NF-кB signaling pathway in mice.* Biomedicine & Pharmacotherapy, 2016. **82**: p. 237-246.
- 48. Ramazanoglu, M.A., et al., *Effects of butein on renal ischemia/reperfusion injury: An experimental study.* Archivio Italiano di Urologia e Andrologia, 2020. **92**(4).
- 49. Genovese, S., et al., A natural propenoic acid derivative activates peroxisome proliferator-activated receptor-β/δ (PPARβ/δ). Life sciences, 2010. 86(13-14): p. 493-498.
- 50. Lee, I.-K., J.-H. Lee, and B.-S. Yun, *Polychlorinated compounds with PPAR-γ agonistic effect from the medicinal fungus Phellinus ribis*. Bioorganic & medicinal chemistry letters, 2008. **18**(16): p. 4566-4568.
- 51. Dong, L., et al., Parthenolide Is Neuroprotective in Rat Experimental Stroke Model: Downregulating NF-<svg style="vertical-align:-0.0pt;width:12.675px;" id="M1" height="10.475" version="1.1" viewBox="0 0 12.675 10.475" width="12.675" xmlns:xlink="<u>http://www.w3.org/1999/xlink</u>" xmlns="<u>http://www.w3.org/2000/svg"</u>> <g transform="matrix(.022,-0,0,-.022,.062,10.412)"><path

<g transform= matrix(.022,-0,0,-.022,.002,10.412) ><pain id="x1D73F" d="M276 4621-36 -1681129 101q83 67 140 67q68 0 68 -50q0 -62 -59 -62q-18 0 -28.5 7t-13.5 16t-10.5 16t-19.5 7q-14 0 -49 -291-114 -931112 -199q18 -31 39 -41.5t64 -10.51-5 -23h-26915 23h29q28 0 28 15q0 14 -13 361-60 1071-42 -181h-116182 363q4 15 4 28 q0 17 -26 17q-15 0 -32 -31-3 23z" /></g> </svg>B, Phospho-p38MAPK, and Caspase-1 and Ameliorating BBB Permeability. Mediators of Inflammation, 2013. 2013: p. 370804.

- 52. Kara, S., et al., Protective effect of hesperetin and naringenin against apoptosis in ischemia/reperfusion-induced retinal injury in rats. The Scientific World Journal, 2014.
 2014.
- 53. Lü, Q., et al., *Guattegaumerine protects primary cultured cortical neurons against oxidative stress injury induced by hydrogen peroxide concomitant with serum deprivation.* Cellular and molecular neurobiology, 2009. **29**(3): p. 355.
- 54. Park, E.J., et al., *Honokiol Protects the Kidney from Renal Ischemia and Reperfusion Injury by Upregulating the Glutathione Biosynthetic Enzymes.* Biomedicines, 2020. **8**(9).
- 55. Chen, K., et al., Berberine reduces ischemia/reperfusion-induced myocardial apoptosis via activating AMPK and PI3K–Akt signaling in diabetic rats. Apoptosis, 2014. **19**(6): p. 946-957.
- Kim, Y.M., et al., *Palmatine from Coptidis rhizoma reduces ischemia–reperfusion-mediated acute myocardial injury in the rat.* Food and Chemical Toxicology, 2009.
 47(8): p. 2097-2102.
- 57. Xue, L., et al., *Effect and mechanism of salvianolic acid B on the myocardial ischemiareperfusion injury in rats.* Asian Pacific Journal of Tropical Medicine, 2014. **7**(4): p. 280-284.

- 58. Kam, K.-Y., et al., *p-Hydroxybenzyl alcohol prevents brain injury and behavioral impairment by activating Nrf2, PDI, and neurotrophic factor genes in a rat model of brain ischemia.* Molecules and cells, 2011. **31**(3): p. 209-215.
- 59. Yao, R.-Q., et al., *Cornel iridoid glycoside promotes neurogenesis and angiogenesis and improves neurological function after focal cerebral ischemia in rats.* Brain Research Bulletin, 2009. **79**(1): p. 69-76.
- 60. Long, L., et al., *Protective effects of fisetin against myocardial ischemia/reperfusion injury*. Experimental and therapeutic medicine, 2020. **19**(5): p. 3177-3188.
- 61. Xie, W., et al., *Polygalasaponin F inhibits neuronal apoptosis induced by oxygen-glucose deprivation and reoxygenation through the PI3K/Akt pathway.* Basic & clinical pharmacology & toxicology, 2020. **127**(3): p. 196-204.
- 62. Erboga, M., et al., *Protective effects of thymoquinone on experimental testicular ischaemia–reperfusion injury: an apoptotic, proliferative and biochemical study.* Andrologia, 2016. **48**(2): p. 222-230.
- 63. Xue, Y., et al., Safranal, an active constituent of saffron, ameliorates myocardial ischemia via reduction of oxidative stress and regulation of Ca2+ homeostasis. Journal of Pharmacological Sciences, 2020. **143**(3): p. 156-164.
- 64. Zhan, C. and J. Yang, *Protective effects of isoliquiritigenin in transient middle cerebral artery occlusion-induced focal cerebral ischemia in rats.* Pharmacol Res, 2006. **53**(3): p. 303-9.
- 65. Wu, X., et al., *Ginkgolide B preconditioning protects neurons against ischaemia-induced apoptosis.* Journal of cellular and molecular medicine, 2009. **13**(11-12): p. 4474-4483.
- 66. Zahran, E.M., et al., *Antiulcer potential and molecular docking of flavonoids from Ocimum forskolei Benth., family Lamiaceae.* Natural product research, 2019: p. 1-5.
- 67. Guo, H., et al., *Neuroprotective effects of scutellarin against hypoxic-ischemic-induced cerebral injury via augmentation of antioxidant defense capacity.* Chin J Physiol, 2011. **54**(6): p. 399-405.
- 68. Shan, X., et al., *The Protective Effect of Cyanidin-3-Glucoside on Myocardial Ischemia-Reperfusion Injury through Ferroptosis.* Oxidative Medicine and Cellular Longevity, 2021. **2021**.
- 69. Behl, T., et al., *Exploring the Multifaceted Therapeutic Potential of Withaferin A and Its Derivatives*. Biomedicines, 2020. **8**(12): p. 571.
- 70. Xu, Y., et al., *Icaritin activates Nrf2/Keap1 signaling to protect neuronal cells from oxidative stress.* Chemical Biology & Drug Design, 2021. **97**(1): p. 111-120.
- 71. Xie, W., et al., Protective Effects and Target Network Analysis of Ginsenoside Rg1 in Cerebral Ischemia and Reperfusion Injury: A Comprehensive Overview of Experimental Studies. Cells, 2018. 7(12): p. 270.
- 72. Chen, T., et al., *Suppressing receptor-interacting protein 140: a new sight for salidroside to treat cerebral ischemia.* Molecular neurobiology, 2016. **53**(9): p. 6240-6250.
- 73. Yu, L., et al., Confirmation of potential neuroprotective effects of natural bioactive compounds from traditional medicinal herbs in cerebral ischemia treatment. Journal of Integrative Neuroscience, 2020. **19**(2): p. 373-384.
- 74. Gugliandolo, A., P. Bramanti, and E. Mazzon, *Activation of Nrf2 by Natural Bioactive Compounds: A Promising Approach for Stroke?* International Journal of Molecular Sciences, 2020. **21**(14): p. 4875.
- 75. Wei, X., et al., *Hydroxysafflor yellow A protects rat brains against ischemia-reperfusion injury by antioxidant action.* Neuroscience Letters, 2005. **386**(1): p. 58-62.
- 76. Zhang, Y., et al., *Paeoniflorin Attenuates Cerebral Ischemia-Induced Injury by Regulating Ca2+/CaMKII/CREB Signaling Pathway.* Molecules, 2017. **22**(3): p. 359.

- 77. Kim, S.W., et al., *Glycyrrhizic acid affords robust neuroprotection in the postischemic brain via anti-inflammatory effect by inhibiting HMGB1 phosphorylation and secretion.* Neurobiol Dis, 2012. **46**(1): p. 147-56.
- 78. Kang, Z., et al., *Curculigoside A induces angiogenesis through VCAM-1/Egr-3/CREB/VEGF signaling pathway.* Neuroscience, 2014. **267**: p. 232-240.
- 79. Shah, Z.A., et al., *The flavanol (–)-epicatechin prevents stroke damage through the Nrf2/HO1 pathway*. Journal of Cerebral Blood Flow & Metabolism, 2010. **30**(12): p. 1951-1961.
- 80. Shi, Y.-S., et al., *Nomilin protects against cerebral ischemia–reperfusion induced neurological deficits and blood–brain barrier disruption via the Nrf2 pathway*. Food & function, 2019. **10**(9): p. 5323-5332.
- 81. Wang, T., et al., *Nobiletin alleviates cerebral ischemic-reperfusion injury via MAPK signaling pathway*. American journal of translational research, 2019. **11**(9): p. 5967.
- 82. Rabiei, Z. and M. Rafieian-Kopaei, *Neuroprotective effect of pretreatment with Lavandula officinalis ethanolic extract on blood-brain barrier permeability in a rat stroke model.* Asian Pacific journal of tropical medicine, 2014. 7: p. S421-S426.
- 83. Kim, J.-M., et al., *S-Allyl-L-cysteine attenuates cerebral ischemic injury by scavenging peroxynitrite and inhibiting the activity of extracellular signal-regulated kinase.* Free radical research, 2006. **40**(8): p. 827-835.
- 84. Silva-Islas, C.A., et al., *Diallyl trisulfide protects rat brain tissue against the damage induced by ischemia-reperfusion through the Nrf2 pathway*. Antioxidants, 2019. 8(9): p. 410.
- 85. Janyou, A., et al., *Dihydrocapsaicin Attenuates Blood Brain Barrier and Cerebral Damage in Focal Cerebral Ischemia/Reperfusion via Oxidative Stress and Inflammatory*. Scientific Reports, 2017. **7**(1): p. 10556.
- 86. Albohy, A., et al., *Multitarget in silico studies of Ocimum menthiifolium, family Lamiaceae against SARS-CoV-2 supported by molecular dynamics simulation.* Journal of Biomolecular Structure and Dynamics, 2020: p. 1-11.
- 87. Gao, K., et al., *A phenolic amide (LyA) isolated from the fruits of Lycium barbarum protects against cerebral ischemia–reperfusion injury via PKCε/Nrf2/HO-1 pathway.* Aging (Albany NY), 2019. **11**(24): p. 12361.
- 88. Yang, Z., et al., *Protective effects of mangiferin on cerebral ischemia–reperfusion injury and its mechanisms*. European Journal of Pharmacology, 2016. **771**: p. 145-151.
- 89. Wu, S., et al., *Procyanidin B2 attenuates neurological deficits and blood–brain barrier disruption in a rat model of cerebral ischemia.* Molecular nutrition & food research, 2015. **59**(10): p. 1930-1941.
- 90. Wu, S., et al., *Myricetin ameliorates brain injury and neurological deficits via Nrf2 activation after experimental stroke in middle-aged rats.* Food & function, 2016. **7**(6): p. 2624-2634.
- 91. Liu, D., et al., *Protective effects of chlorogenic acid on cerebral ischemia/reperfusion injury rats by regulating oxidative stress-related Nrf2 pathway*. Drug design, development and therapy, 2020. **14**: p. 51-60.
- 92. Zahran, E.M., et al., *Local anaesthetic potential, metabolic profiling, molecular docking and in silico ADME studies of Ocimum forskolei, family Lamiaceae.* Natural product research, 2020: p. 1-7.
- 93. Shang, J., et al., *Therapeutic effects of pretreatment with tocovid on oxidative stress in postischemic mice brain.* Journal of Stroke and Cerebrovascular Diseases, 2018. **27**(8): p. 2096-2105.

- 94. Kuo, P.C., et al., *3H-1,2-Dithiole-3-thione as a novel therapeutic agent for the treatment of ischemic stroke through Nrf2 defense pathway.* Brain Behav Immun, 2017. **62**: p. 180-192.
- 95. Zhao, H.-D., et al., *Sulforaphane protects liver injury induced by intestinal ischemia reperfusion through Nrf2-ARE pathway*. World journal of gastroenterology: WJG, 2010. **16**(24): p. 3002.
- 96. Bai, Y., et al., *Biochanin A attenuates myocardial ischemia/reperfusion injury through the TLR4/NF-κB/NLRP3 signaling pathway.* Acta cirurgica brasileira, 2019. **34**(11).
- 97. Jiao, Y., et al., *Xanthohumol protects neuron from cerebral ischemia injury in experimental stroke*. Molecular biology reports, 2020. **47**(4): p. 2417-2425.
- 98. Deng, H., et al., *A-lipoic acid protects against cerebral ischemia/reperfusion-induced injury in rats.* Mol Med Rep, 2015. **11**(5): p. 3659-65.
- 99. Wang, C.-P., et al., Isoquercetin Ameliorates Cerebral Impairment in Focal Ischemia Through Anti-Oxidative, Anti-Inflammatory, and Anti-Apoptotic Effects in Primary Culture of Rat Hippocampal Neurons and Hippocampal CA1 Region of Rats. Molecular Neurobiology, 2017. **54**(3): p. 2126-2142.
- 100. Ding, Y., et al., Antioxidant and pro-angiogenic effects of corilagin in rat cerebral ischemia via Nrf2 activation. Oncotarget, 2017. **8**(70): p. 114816.
- 101. Zhang, S., et al., *A novel, highly-water-soluble apigenin derivative provides neuroprotection following ischemia in male rats by regulating the ERK/Nrf2/HO-1 pathway.* European Journal of Pharmacology, 2019. **855**: p. 208-215.
- 102. Li, Q., et al., Luteoloside attenuates neuroinflammation in focal cerebral ischemia in rats via regulation of the PPARγ/Nrf2/NF-κB signaling pathway. International Immunopharmacology, 2019. 66: p. 309-316.
- Zhu, J., L. Wang, and J. Zhang, *Galuteolin inhibited autophagy for neuroprotection against transient focal cerebral ischemia in rats*. NeuroMolecular Medicine, 2020. 22(4): p. 493-502.
- 104. Tong, Q., et al., *Notoginsenoside R1 for organs ischemia/reperfusion injury: a preclinical systematic review.* Frontiers in pharmacology, 2019. **10**: p. 1204.
- 105. Wei, G., et al., *Anti-inflammatory effect of protocatechuic aldehyde on myocardial ischemia/reperfusion injury in vivo and in vitro*. Inflammation, 2013. **36**(3): p. 592-602.
- 106. Zhu, Y., et al., A new flavonoid glycoside (APG) isolated from Clematis tangutica attenuates myocardial ischemia/reperfusion injury via activating PKCε signaling. Biochimica et Biophysica Acta (BBA) Molecular Basis of Disease, 2017. 1863(3): p. 701-711.
- 107. Xu, Y., et al., *Cardioprotective effect of isorhamnetin against myocardial ischemia reperfusion (I/R) injury in isolated rat heart through attenuation of apoptosis.* Journal of cellular and molecular medicine, 2020. **24**(11): p. 6253-6262.
- 108. Hu, Y., et al., Senkyunolide I protects rat brain against focal cerebral ischemia– reperfusion injury by up-regulating p-Erk1/2, Nrf2/HO-1 and inhibiting caspase 3. Brain Research, 2015. 1605: p. 39-48.
- 109. Zhou, F., et al., *Schizandrin A protects against cerebral ischemia-reperfusion injury by suppressing inflammation and oxidative stress and regulating the AMPK/Nrf2 pathway regulation.* American Journal of Translational Research, 2019. **11**(1): p. 199.
- 110. Chan, S.J., et al., *Neuroprotective effects of andrographolide in a rat model of permanent cerebral ischaemia.* British journal of pharmacology, 2010. **161**(3): p. 668-679.
- 111. Ma, T., Y.L. Shi, and Y.L. Wang, *Forsythiaside A protects against focal cerebral ischemic injury by mediating the activation of the Nrf2 and endoplasmic reticulum stress pathways.* Molecular medicine reports, 2019. **20**(2): p. 1313-1320.

- 112. Ding, Y., et al., Posttreatment with 11-Keto-β-Boswellic Acid Ameliorates Cerebral Ischemia–Reperfusion Injury: Nrf2/HO-1 Pathway as a Potential Mechanism. Molecular Neurobiology, 2015. 52(3): p. 1430-1439.
- 113. Ding, Y., et al., Enhanced Neuroprotection of Acetyl-11-Keto-β-Boswellic Acid (AKBA)-Loaded O-Carboxymethyl Chitosan Nanoparticles Through Antioxidant and Anti-Inflammatory Pathways. Molecular Neurobiology, 2016. 53(6): p. 3842-3853.
- 114. Wang, H., et al., Neuroprotective Effect of Swertiamain on Cerebral Ischemia/Reperfusion Injury by Inducing the Nrf2 Protective Pathway. ACS Chem Neurosci, 2019. 10(5): p. 2276-2286.
- 115. Wu, C., et al., *Mitochondrial protective effect of neferine through the modulation of nuclear factor erythroid 2-related factor 2 signalling in ischaemic stroke*. British journal of pharmacology, 2019. **176**(3): p. 400-415.
- 116. Wu, G., et al., Britanin Ameliorates Cerebral Ischemia–Reperfusion Injury by Inducing the Nrf2 Protective Pathway. Antioxidants & Redox Signaling, 2017. **27**(11): p. 754-768.
- 117. Chen, Z., et al., Osthole, a natural coumarin improves cognitive impairments and BBB dysfunction after transient global brain ischemia in C57 BL/6J mice: involvement of Nrf2 pathway. Neurochemical research, 2015. **40**(1): p. 186-194.
- 118. Cheng, C.Y., S.T. Kao, and Y.C. Lee, *Ferulic Acid Exerts Anti-apoptotic Effects against Ischemic Injury by Activating HSP70/Bcl-2- and HSP70/Autophagy-Mediated Signaling after Permanent Focal Cerebral Ischemia in Rats.* Am J Chin Med, 2019. **47**(1): p. 39-61.
- 119. Janssens, D., et al., Protection by bilobalide of the ischaemia-induced alterations of the mitochondrial respiratory activity. Fundamental & clinical pharmacology, 2000. 14(3): p. 193-201.
- 120. Bahonar, A., et al., *Carotenoids as potential antioxidant agents in stroke prevention: A systematic review.* International journal of preventive medicine, 2017. **8**.
- 121. Zhang, F., et al., β-cryptoxanthin alleviates myocardial ischaemia/reperfusion injury by inhibiting NF-κB-mediated inflammatory signalling in rats. Arch Physiol Biochem, 2020: p. 1-8.
- 122. Tong, C., et al., Intravenous Administration of Lycopene, a Tomato Extract, Protects against Myocardial Ischemia-Reperfusion Injury. Nutrients, 2016. **8**(3): p. 138.
- 123. Turkler, C., et al., *The ameliorative effect of lutein on ovarian ischemia-reperfusion injury in rats.* Bratislavske lekarske listy, 2018. **119**(11): p. 713-717.
- 124. Davey, P.G., et al., Neuroprotective effects of zeaxanthin in a mouse model of retinal ischemia/reperfusion injury. Investigative Ophthalmology & Visual Science, 2020.
 61(7): p. 655-655.
- 125. Qiu, X., et al., *Protective effects of astaxanthin against ischemia/reperfusion induced renal injury in mice*. Journal of translational medicine, 2015. **13**(1): p. 1-9.
- 126. Seto, S.-W., et al., *Angiogenesis in ischemic stroke and angiogenic effects of Chinese herbal medicine*. Journal of clinical medicine, 2016. **5**(6): p. 56.
- 127. Yan, X., et al., Calycosin-7-<i>O</i>-<i>β</i>-<i>D</i>-splucoside Attenuates OGD/R-Induced Damage by Preventing Oxidative Stress and Neuronal Apoptosis via the SIRT1/FOXO1/PGC-1<i>α</i>Pathway in HT22 Cells. Neural Plasticity, 2019. 2019: p. 8798069.
- 128. Kumar, V., R.S. Chauhan, and C. Tandon, *Biosynthesis and therapeutic implications of iridoid glycosides from Picrorhiza genus: the road ahead.* Journal of Plant Biochemistry and Biotechnology, 2017. **26**(1): p. 1-13.

- 129. Wang, Y., et al., Ursolic Acid Ameliorates Inflammation in Cerebral Ischemia and Reperfusion Injury Possibly via High Mobility Group Box 1/Toll-Like Receptor 4/NFκB Pathway. Front Neurol, 2018. 9: p. 253.
- 130. Zahran, E.M., et al., *Metabolic profiling, histopathological anti-ulcer study, molecular docking and molecular dynamics of ursolic acid isolated from Ocimum forskolei Benth.(family Lamiaceae).* South African Journal of Botany, 2020. **131**: p. 311-319.
- 131. Ling, C., et al., *Neuroprotective effect of apigenin against cerebral ischemia/reperfusion injury*. Journal of International Medical Research, 2020. **48**(9): p. 0300060520945859.
- 132. Ozturk, H., et al., *Lithospermic acid and ischemia/reperfusion injury of the rat small intestine prevention*. Adv Clin Exp Med, 2012. **21**(4): p. 433-9.
- 133. Kong, X., et al., *Neuroprotective effects of allicin on ischemia-reperfusion brain injury*. Oncotarget, 2017. **8**(61): p. 104492.
- 134. Yiming, L., et al., *Neuroprotective effects of breviscapine against apoptosis induced by transient focal cerebral ischaemia in rats.* Journal of Pharmacy and Pharmacology, 2008. **60**(3): p. 349-355.
- 135. Lee, J.H., et al., *Cyclobuxine protects the isolated rat heart from the myocardial injuries produced by ischemia and reperfusion*. Planta Med, 1993. **59**(4): p. 296-301.
- 136. Shi, C., J. Li, and J. Li, *Ephedrine attenuates cerebral ischemia/reperfusion injury in rats through NF-кB signaling pathway*. Human & Experimental Toxicology, 2020: p. 0960327120975456.
- 137. Ergün, Y., et al., *Effects of silibinin and ethanol on skeletal muscle ischemia-reperfusion injury*. Acta cirurgica brasileira, 2013. **28**(3): p. 179-184.
- Yuqin, W., TETRANDRINE CONTROL PRO-INFLAMMATORY FACTOR TO REDUCE RAT MYOCARDIAL ISCHAEMIC/REPERFUSION INJURY. Heart, 2012. 98(Suppl 2): p. E124-E124.
- 139. Nandy, S., et al., *Efficacious naturally occurring anti-cerebral ischaemia extracts, compounds and formulations data from animal models.* Journal of Biologically Active Products from Nature, 2017. **7**(3): p. 178-199.
- 140. Pan, Z., et al., *Protective Effect of Anthocyanin on Neurovascular Unit in Cerebral Ischemia/Reperfusion Injury in Rats.* Frontiers in Neuroscience, 2018. **12**(947).
- 141. Zheng, Y., et al., *Cardioprotective Natural Compound Pinocembrin Attenuates Acute Ischemic Myocardial Injury via Enhancing Glycolysis.* Oxidative Medicine and Cellular Longevity, 2020. **2020**: p. 4850328.
- 142. Rebhan, M.; Chalifa-Caspi, V.; Prilusky, J.; Lancet, D. GeneCards: A novel functional genomics compendium with automated data mining and query reformulation support. *Bioinformatics (Oxf. Engl.)* 1998, 14, 656–664.
- 143. Wang, J.C.; Chu, P.Y.; Chen, C.M.; Lin, J.H. idTarget: A web server for identifying protein targets of small chemical molecules with robust scoring functions and a divide-and conquer docking approach. *Nucleic Acids Res.* **2012**, *40*, W393–W399.
- 144. Gfeller, D., Michielin, O., & Zoete, V. (2013). Shaping the interaction landscape of bioactive molecules. *Bioinformatics*, 29(23), 3073-3079.
- 145. Mering, C.V.; Huynen, M.; Jaeggi, D.; Schmidt, S.; Bork, P.; Snel, B. STRING: A database of predicted functional associations between proteins. *Nucleic Acids Res.* 2003, 31, 258– 261.
- 146. Smoot, M.E.; Ono, K.; Ruscheinski, J.; Wang, P.L.; Ideker, T. Cytoscape 2.8: New features for data integration and network visualization. *Bioinformatics* **2011**, *27*, 431–432.

- 147. Bowers, K.J.; Chow, D.E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, M.A.; Sacerdoti, F.D.; et al. Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of the SC'06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, Tampa, FL, USA, 11–17 November 2006; IEEE: New York, NY, USA, 2006; p. 43..
- 148. Release, S. 3: Desmond Molecular Dynamics System, DE Shaw Research, New York, NY, 2017; Maestro-Desmond Interoperability Tools, Schrödinger: New York, NY, USA, 2017. 7. Schrödinger LLC. Maestro, Version 9.0; Schrödinger LLC: New York, NY, USA, 2009.
- 149. Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802.
- 150. Kim, S.; Oshima, H.; Zhang, H.; Kern, N.R.; Re, S.; Lee, J.; Rous, B.; Sugita, Y.; Jiang, W.; Im, W. CHARMM-GUI free energy calculator for absolute and relative ligand solvation and binding free energy simulations. J. Chem. Theory Comput. 2020, 16, 7207–7218.
- 151. Ngo, S.T.; Tam, N.M.; Quan, P.M.; Nguyen, T.H. Benchmark of Popular Free Energy Approaches Revealing the Inhibitors Binding to SARS-CoV-2 Mpro. J. Chem. Inf. Model. 2021, 61, 2302–2312.