1	Supporting information for
2	
3	Polyphenol characterisation and diverse bioactivities of native
4	Australian lilly pilly (Syzygium paniculatum) extract
5	
6 7	River J Pachulicz ^a , Long Yu ^b , Blagojce Jovcevski ^{a,b} , Vincent Bulone ^{b,c} , Tara L Pukala ^{a,*}
8 9 10 11 12	 ^a Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia ^b School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, 5005, Australia ^c Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm, Sweden
13	<u>*Corresponding Author</u>
14	Department of Chemistry, School of Physical Sciences
15	University of Adelaide, Adelaide
16	Australia, 5005
17	Tel.: +61 8 8313 5497
18	E-mail: tara.pukala@adelaide.edu.au
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	

31 Figure S1. HPLC profiles of plant extracts. Chromatograms of plant extracts from lilly pilly (orange), purple

- 32 sweet potato (pink) and blackberry (blue) measured at 525 nm and 280 nm. Malvidin-3-glucoside internal standard
- 33 (10 ppm) is labelled in each chromatogram (*). The percentage anthocyanin component of the lilly pilly extract
- 34 at 280 nm was calculated using the ratio between the sum of the integrated peak areas of the identified
- 35 anthocyanins and the sum of the integrated peak areas for all peaks in the extract (not including the internal

38 Figure S2. Lilly pilly monosaccharide analysis. Liquid chromatography analysis of monosaccharides from lilly

39 pilly extract hydrolysates.

40 Table S1. Quantification of anthocyanin isoforms in lilly pilly biomass. Anthocyanins below the limit of

11 detection denoted of 1

			Amount (mg		
Biomass	Anthocyanin Isoform	m/z	Cy3Glc/100 g DW		
			(SEM)		
	delphinidin-diglucoside	627.2	24.96 (1.33)		
Lilly Pilly	petunidin-diglucoside	641.2	34.70 (0.49)		
	malvidin-diglucoside	655.2	379.20 (11.02)		
	Total		438.86 (12.84)		
	cyanidin-3-p-hydroxybenzoylsophoroside-5-glucoside	893.2	0.92 (0.24)		
	peonidin-3-p-hydroxybenzoylsophoroside-5-glucoside	907.3	*		
	cyanidin-3-feruloylsophoroside-5-glucoside	949.3	*		
	Unknown (cyanidin-based)	1085.3	*		
Purnla Swaat Pa	cyanidin-3-caffeoylcaffeoylsophoroside-5-glucoside	1097.2	*		
i ui pie Sweet i o	cyanidin-3-caffeoyl-p-hydroxybenzoylsophoroside-5-gluco	side 1055.3	200.31 (11.50)		
	cyanidin-3-caffeoylferuloylsophoroside-5-glucoside	1111.3	85.88 (4.54)		
	peonidin-3-caffeoyl-p-hydroxybenzoylsophoroside-5-gluco	oside 1069.3	16.89 (1.03)		
	peonidin-3-caffeoylferuloylsophoroside-5-glucoside	1125.3	6.12 (0.46)		
	Total		310.12 (17.77)		
	cyanidin-3-glucoside	449.1	565.68 (22.50)		
	cyanidin-3-rutinoside	595.2	84.68 (3.48)		
Blackherry	cyanidin-3-xyloside	419.1	39.80 (1.47)		
Diackberry	cyanidin-3-malonylglucoside	535.1	2.57 (0.21)		
	cyanidin-3-dioxaly1glucoside	593.1	29.70 (1.31)		
	Total	I	722.42 (28.96)		

42

43

44 Table S2. Thermal stability of anthocyanin-enriched extracts. Rate constants (k) for the thermal degradation

45 of anthocyanins from each source at 80 °C, the R² of 1st order regressions fitted to each plot and the corresponding

46 half-lives of anthocyanin thermal degradation are given.

	Biomass k	x 10 ⁻⁵	T _{1/2} (h)	R ²	
--	-----------	--------------------	----------------------	-----------------------	--

	(s ⁻¹)		
Lilly Pilly	4.003	4.8	0.995
Purple Sweet Potato	0.7466	25.8	0.999
Blackberry	2.027	9.5	0.999