Electronic supplementary material (ESI)

Purified recombinant enzymes efficiently hydrolyze conjugated

urinary (poly)phenols metabolites

Jacob Lessard-Lord^{a,b,c}, Pier-Luc Plante^{a,b} and Yves Desjardins^{a,b,c*}

Affiliations

- a) Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- b) Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- c) Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada

*Corresponding author. E-mail address: yves.desjardins@fsaa.ulaval.ca

Supplemental Table S1: Identification of (poly)phenols in cranberry extract by UPLC-QToF

Class	Identification	RT (min)	[M-H] ⁻	Molecular	Error (ppm)	MS ² fragments (Relative intensity)	ID lovola
	Catechin	7 30	289.0711	C15H1406	<u>(ppm)</u> -0.35	203 0706 (100) · 245 0814 (57)	1
	Enicatechin	10.81	289.0715	C15H14O6	1 04	245.0814 (100)	1
	Procyanidin A2	17 54	575 1177	C30H24O12	-1.22	245.0014(100) 285 0251 (100) · 289 0676 (53) · 449 0878 (29) · 539 0981 (19) · 407 0771 (19)	1
Flavan-3-	Trimer PACs A-Type $(1x A) - 1$	15.18	863 1815	C45H36O18	-1.67	575 1187 (100) : 449 0852 (46) : 289 0691 (34)	2
ole	Trimer PACs A-Type $(1x A) = 2$	17.97	863 1820	C45H36O18	-1.05	575.1187(100): 449.0852(30): 289.0691(34)	$\frac{2}{2}$
015	Procyanidin B2	9.52	577 1348	C30H26O12	0.35	$2890717(100)\cdot4070768(87)\cdot4250872(30)\cdot2450814(23)$	1
	Trimer PACs B-Type - 1	14 20	865 1975	C45H38O18	-1.18	$407\ 0761\ (100) \cdot 289\ 0904\ (67) \cdot 577\ 1392\ (59)$	2
	Trimer PACs B-Type - 7	17.20	865 1980	C45H38O18	-0.60	407.0710 (100) : 289.0904 (07) : 577 1395 (57)	$\frac{2}{2}$
	n-Coumaric acid	11 49	163 0392	C9H8O3	_1.84	119 0483 (100)	1
	Coumaroyl-beyoside - 1	5 76	325.0916	C15H18O8	-1.04	119.0403 (100) $119.0500 (100) \cdot 163.0395 (27)$	2
	Coumaroyl hexoside 2	8.85	325.0910	C15H18O8	-2.21	$145,0315,(100) \cdot 110,0504,(71) \cdot 117,0354,(42) \cdot 163,0403,(17)$	2
	Coumaroyl monotronoin	0.05	525.0924	C15H1808	-1.41	145.0515(100), 117.0504(71), 117.0554(42), 105.0405(17) 162 0250(100) · 147 0441(67) · 110 0466(54) · 101 0206(20)	2
	Courseroul dibudromonotronoin	17.71	535.1445	C25H20O13	-1.31	103.0350(100), 147.0441(07), 119.0400(54), 191.0290(20) $162.0405(100) \cdot 110.0502(27) \cdot 122.0474(22)$	2
	Countaroyi-dinydromonouropeni Chlorogania agid	0.01	357.1007	C16H1800	-0.19	103.0403(100), 119.0302(27), 125.0474(22) 101.0561(100)	2 1
Phonolic	Conformation Conformation	0.00 7.26	333.06/1	C15H18O9	-0.90	191.0301(100) $125.0422(100) \cdot 170.0224(45)$	1
acids	Calleoyi-nexoside	/.30	341.08/2	C15H1809	-1.94	155.0425 (100); 1/9.0524 (45)	2
	Sinapoyi-nexoside	10.91	383.1120	C1/H22010	-3.62	1902.0209 (100); 203.0314 (70); 173.0040 (39)	2
	Vaniloyi-nexoside	8.02 0.80	329.0873	C14H1809	-1.03	121.0269 (100) 160.0162 (100) - 175.0206 (26) - 122.0200 (20) - 124.0268 (20) - 102.0401 (0)	2
	Feruloyi-nexoside	9.89	355.1027	C16H20O9	-2.12	100.0103 (100); 1/5.0390 (80); 132.0209 (29); 134.0308 (20); 195.0491 (9)	2
	3,4-dinydroxybenzoic acid	3.48	153.0184	C/H6O4	-2.61	109.0280 (100)	1
	Dinydroxybenzoic acid	4.32	153.0182	C/H6O4	-3.92	109.0279 (100)	2
	Hydroxybenzoyl-hexosyl- hexoside	9.25	461.1289	С19Н26О13	-1.30	121.0274 (100)	2
	Quercetin	23.46	301.0356	C15H10O7	2.66	151.0050 (100)	1
	Quercetin-3-galactoside	17.27	463.0883	C21H20O12	-2.53	300.0275 (100) ; 271.0247 (39) ; 255.0297 (16) ; 243.0292 (8)	1
	Quercetin-3-rhamnoside	19.80	447.0923	C21H20O11	-0.94	300.0280 (100) ; 271.0244 (37) ; 255.0272 (17) ; 243.0303 (7)	1
	Quercetin-pentoside - 1	18.30	433.0767	C20H18O11	-1.85	300.0293 (100) ; 271.0258 (42) ; 255.0318 (20) ; 243.0319 (10)	2
	Quercetin-pentoside - 2	18.70	433.0765	C20H18O11	-2.67	300.0284 (100) ; 271.0252 (56) ; 255.0298 (21) ; 243.0306 (12)	2
	Quercetin-pentoside - 3	19.24	433.0779	C20H18O11	1.85	300.0329 (100) ; 271.0289 (46) ; 255.0265 (22) ; 243.0275 (11)	2
	Quercetin-deoxyhexoside	21.56	447.0918	C21H20O11	-2.16	314.0479 (100) ; 271.0211 (62) ; 243.0363 (58) ; 285.0472 (39) ; 299.0133 (15)	2
Flovonolo	Quercetin-hydroxybenzoyl- hexoside	24.94	567.1136	C28H24O13	-0.53	300.0285 (100) ; 271.0280 (23) ; 255.0282 (8) ; 243.0245 (3)	2
1 14 011015	Isorhamnetin	26.67	315 0508	C16H12O7	-0.71	151 0060 (100) : 163 0027 (58) : 148 0164 (35)	1
	Myricetin	20.07	317 0302	C15H10O8	-0.86	151,0000(100),105,0027(50),140,0104(55)	1
	Myricetin-pentoside - 1	15.18	449 0719	C20H18O12	-1.52	$316\ 0221\ (100) \cdot 271\ 0240\ (34) \cdot 287\ 0200\ (33)$	2
	Myricetin-pentoside - 2	16.36	449.0719	C20H18O12	-1.52	316.0219(100) + 271.0240(34) + 287.0200(23) 316.0219(100) + 271.0244(38) + 287.0189(22)	$\frac{2}{2}$
	Myricetin-pentoside - 3	16.30	449.0718	C20H18O12	-1.69	316,0235,(100),271,0238,(32),287,0189,(22)	$\frac{2}{2}$
	Myricetin-bexoside	14 30	479 0822	C21H20O13	-2.15	316.0213(100) : 271.0258(23) : 287.0100(21)	$\frac{2}{2}$
	Myricetin methyl	23.87	331 0454	C16H1208	-1.55	$151\ 0039\ (100) \cdot 316\ 0238\ (60) \cdot 107\ 0132\ (28) \cdot 136\ 0170\ (25) \cdot 271\ 0250\ (17)$	$\frac{2}{2}$
	Syringetin hexoside	20.43	507 1137	C23H24O13	0.30	$344\ 0503\ (100) \cdot 273\ 0387\ (31) \cdot 301\ 0366\ (20) \cdot 242\ 0424\ (16)$	2
a Idontificat	ion lavala wana astablishad	20.45	507.1157	~ 231124013	-0.39	273.0305 (100), 273.0307 (31), 301.0300 (20), 242.0424 (10)	<u></u>
spectra an authentic standard, while level 2 identifications were proposed according to exact mass, MS ² fragmentation spectra and UV absorption							
spectra	compared	to		the	. 1	iterature and online databas	ses.

Class	Compound D		aily dose (mg)		
	Catechin	0.219	±	0.005	
	Epicatechin	1.57	±	0.02	
	Procyanidin A2	3.83	±	0.07	
	Trimer PACs A-Type (1x A) – 1	1.16	±	0.03	
Flavan-3-ols	Trimer PACs A-Type $(1x A) - 2$	1.86	±	0.03	
	Procyanidin B2	Non detected			
	Trimer PACs B-Type – 1	7.98	±	0.12	
	Trimer PACs B-Type – 2	1.59	±	0.03	
	Flavan-3-ols total *	86.9	±	1.9	
	p-Coumaric acid	1.54	±	0.02	
	Coumaroyl-hexoside – 1	0.400	\pm	0.006	
	Coumaroyl-hexoside – 2	0.218	±	0.004	
	Coumaroyl-monotropein	0.446	±	0.007	
	Coumaroyl-dihydromonotropein	0.905	±	0.011	
	Chlorogenic acid	2.31	±	0.03	
Phenolic	Caffeoyl-hexoside	0.206	±	0.002	
acids	Sinapoyl-hexoside	0.423	±	0.007	
	Vanilloyl-hexoside	0.0640	±	0.0011	
	Feruloyl-hexoside	0.251	±	0.004	
	3,4-dihydroxybenzoic acid	No	n detec	ted	
	Dihydroxybenzoic acid	0.139	±	0.005	
	Hydroxybenzoyl-hexosyl-hexoside	0.150	±	0.002	
	Phenolic acids and derivatives total	7.05	±	0.11	
	Quercetin	3.48	±	0.05	
	Quercetin-3-galactoside	0.418	±	0.006	
	Quercetin-3-rhamnoside	0.940	±	0.013	
	Quercetin-pentoside – 1	0.643	±	0.036	
	Quercetin-pentoside – 2	0.422	±	0.009	
	Quercetin-pentoside – 3	0.993	±	0.015	
	Quercetin-deoxyhexoside	0.124	±	0.002	
	Quercetin-hydroxybenzoyl-hexoside	0.335	±	0.005	
Flavonols	Isorhamnetin	0.267	±	0.004	
	Myricetin	1.82	±	0.02	
	Myricetin-pentoside – 1	0.104	±	0.002	
	Myricetin-pentoside – 2	0.157	±	0.002	
	Myricetin-pentoside – 3	0.385	±	0.008	
	Myricetin-hexoside	0.174	±	0.003	
	Myricetin methyl	0.149	±	0.002	
	Syringetin-hexoside	0.232	±	0.004	
	Flavonols total	10.64	±	0.18	
	Cyanidin 3-galactoside	0.0281	±	0.0007	
	Cyanidin 3-glucoside	0.0461	±	0.0014	
	Cyanidin 3-arabinoside	0.303	±	0.002	
Anthocyanins	Peonidin 3-galactoside	0.0374	±	0.0004	
•	Peonidin 3-glucoside	0.077	±	0.006	
	Peonidin 3-arabinoside	0.2495	±	0.0002	
	Anthocyanins total	0.740	±	0.011	
	(Poly)phenols total	105	±	2	

Supplemental Table S2: Daily dose of (poly)phenols provided by cranberry extract

* Determined by phloroglucinolysis with a mean degree of polymerization of 6.

Supplemental Table S3: Concentration of deuterated internal standards in acetonitrile used to stop the enzymatic

hydrolysis

Compound	Concentration (ppm)
3,4,5-trihydroxybenzoic-2,6-d ₂ acid	5
Succinic acid-d ₆	25
trans-Cinnamic-d5 acid	25
L-Tryptophan-2',4',5',6',7'-d ₅ (indole-d ₅)	5
Glycocholic-2,2,4,4-d ₄ acid	5
L-Leucine-d ₇ (iso-propyl-d ₇)	25
4-Hydroxybenzoic-2,3,5,6-d ₄ acid	5
Methyl 4-hydroxybenzoate-2,3,5,6-d ₄	5

Class	Metabolite ^a	Usual name / abbreviation ^b	Possible origin
	3-(3'-Hydroxyphenyl)propanoic acid	3-HPPA	Flavan-3-ols ² , anthocyanins ³ , dihydrochalcone ³ ,
PPAs	3-(3',4'-Dihydroxyphenyl)propanoic acid	3,4-DHPPA	flavanones ⁴ , phenolic acids ³ , phenylalanine ^{5,c} and tyrosine ^{6,c}
DVAs	5-(3'-Hydroxyphenyl)valeric acid	3-HPVA	Eleven 2 els ²
FVAS	3-(3',4'-Dihydroxyphenyl)valeric acid	3,4-DHPVA	Flavan-5-018-
DVI a	5-(3'-Hydroxyphenyl)-γ-valerolactone	3-HPVL	Elever 2 alg^2
F V LS	5-(3',4'-Dihydroxyphenyl)-γ-valerolactone	3,4-DHPVL	Flavan-5-018-
(Eni)aataahin	Catechin		Oligomeric flavan-3-ols ² , monomeric flavan-3-
(Epi)catechin	Epicatechin		ols ^d
	3',4'-Dihydroxycinnamic acid	Caffeic acid	Chlorogonia agids and ginnemia agide
Cinnamic acids	4'-Hydroxy-3'-methoxycinnamic acid	Ferulic acid	
	4'-Hydroxy-3',5'-dimethoxycinnamic acid	Sinapic acid	Cinnamic acids ^e
	3,8-Dihydroxy-urolithin	Urolithin A	
Urolithins	3,9-Dihydroxy-urolithin	Isourolithin A	Ellagic acids and ellagitannins ⁷
	3-Hydroxy-urolithin	Urolithin B	
Lignans	Enterolactone		Lignon ⁴
metabolites	Enterodiol		Lighan
Isoflavones metabolites	O-desmethylangolensin		Isoflavone ³

Supplemental Table S4: Possible origin of the identified MPM in urine

^a Metabolites were named according to the standardized nomenclature proposed by Kay *et al.*^{8 b} The usual names and abbreviations cited in this column will be used in the manuscript for clarity and conciseness. ^c Only 3-HPPA can originate from aromatic amino acids metabolism. ^d (Epi)catechin can originate from absorption of intact dietary monomeric flavan-3-ols. ^e Cinnamic acids can originate from absorption of intact dietary cinnamic acids.

Supplemental figures legends

Supplemental Figure S1: Extracted ion chromatograms of multihydroxylated sulfated MPM obtained from rapid synthesis. (A) Dihydroxylated MPM (3,4-DHPPA, 3,4-DHPVA, 3,4-DHPVL and caffeic acid. (B) Multihydroxylated MPM (catechin and epicatechin). Extracted ion chromatograms of monosulfated compounds are represented with a full line, while disulfated compounds are represented with a dashed line.

Supplemental Figure S2: Kinetic of degradation of conjugated MPM and release of unconjugated MPM during enzymatic hydrolysis (continuation of Figure 1). Relative intensity of each MPM is expressed as mean of triplicate \pm SD at each time point. Different color is used when there are multiple isomers for a specific form. For (epi)catechin unconjugated graph, epicatechin is represented by purple line and points, while catechin is represented by yellow line and points. The vertical dashed line at 30 min represents the hydrolysis time required for complete hydrolysis of all conjugated MPM included in this study.

Supplemental Figure S2 (continued)

Bibliography

- L. W. Sumner, A. Amberg, D. Barrett, M. H. Beale, R. Beger, C. A. Daykin, T. W. M. Fan, O. Fiehn, R. Goodacre, J. L. Griffin, T. Hankemeier, N. Hardy, J. Harnly, R. Higashi, J. Kopka, A. N. Lane, J. C. Lindon, P. Marriott, A. W. Nicholls, M. D. Reily, J. J. Thaden and M. R. Viant, Proposed minimum reporting standards for chemical analysis, *Metabolomics*, 2007, 3, 211-221.
- P. Mena, L. Bresciani, N. Brindani, I. A. Ludwig, G. Pereira-Caro, D. Angelino, R. Llorach, L. Calani, F. Brighenti, M. N. Clifford, C. I. R. Gill, A. Crozier, C. Curti and D. Del Rio, Phenyl-γ-valerolactones and phenylvaleric acids, the main colonic metabolites of flavan-3-ols: synthesis, analysis, bioavailability, and bioactivity, *Natural Product Reports*, 2019, 36, 714-752.
- D. Del Rio, A. Rodriguez-Mateos, J. P. E. Spencer, M. Tognolini, G. Borges and A. Crozier, Dietary (Poly)phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects Against Chronic Diseases, *Antioxid. Redox Signal.*, 2013, 18, 1818-1892.
- C. Morand, B. De Roos, M. T. Garcia-Conesa, E. R. Gibney, R. Landberg, C. Manach, D. Milenkovic, A. Rodriguez-Mateos, T. Van de Wiele and F. Tomas-Barberan, Why interindividual variation in response to consumption of plant food bioactives matters for future personalised nutrition, *Proceedings of the Nutrition Society*, 2020, **79**, 225-235.
- Q. Zhang, Y. Zhang, L. Zeng, G. Chen, L. Zhang, M. Liu, H. Sheng, X. Hu, J. Su, D. Zhang, F. Lu, X. Liu and L. Zhang, The Role of Gut Microbiota and Microbiota-Related Serum Metabolites in the Progression of Diabetic Kidney Disease, *Frontiers in Pharmacology*, 2021, 12.
- G. Di Pede, P. Mena, L. Bresciani, T. M. Almutairi, D. Del Rio, M. N. Clifford and A. Crozier, Human colonic catabolism of dietary flavan-3-ol bioactives, *Molecular Aspects of Medicine*, 2022, DOI: https://doi.org/10.1016/j.mam.2022.101107, 101107.
- J. C. Espín, A. González-Sarrías and F. A. Tomás-Barberán, The gut microbiota: A key factor in the therapeutic effects of (poly)phenols, *Biochem. Pharmacol.*, 2017, 139, 82-93.
- C. D. Kay, M. N. Clifford, P. Mena, G. J. McDougall, C. Andres-Lacueva, A. Cassidy, D. Del Rio, N. Kuhnert, C. Manach, G. Pereira-Caro, A. Rodriguez-Mateos, A. Scalbert, F. Tomás-Barberán, G. Williamson, D. S. Wishart and A. Crozier, Recommendations for standardizing nomenclature for dietary (poly)phenol catabolites, *The American Journal of Clinical Nutrition*, 2020, **112**, 1051-1068.