Electronic Supplementary Material (ESI) for Food & Function. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Isoquercitrin from *Apocynum venetum* L produces anti-obesity effect for obese mice by targeting C-1tetrahydrofolate synthase, carbonyl reductase, and glutathione S-transferase P and modification of AMPK/SREBP-1c/FAS/CD36 signaling pathway in mice *in vivo*

Majid Manzoor¹, Makoto Muroi², Naoko Ogawa², Hiroki Kobayashi³, Haruna Nishimura³, Danni Chen¹, Opeyemi Fasina¹, Jianyu Wang¹, Hiroyuki Osada², Minoru Yoshida^{3, 5}, Lan Xiang^{1*} and Jianhua Qi^{1*}

¹College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, P. R. China;

²Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako-shi, Saitama 351-0198, Japan;

³Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;

⁴Department of Biotechnology and Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyoku, Tokyo 113-8657, Japan;

*Correspondence should be addressed to Lan Xiang (lxiang@zju.edu.cn), Jianhua Qi (qijianhua@zju.edu.cn)

Supplementary Tables

Table S1. Effect of Isoquercitrin on blood biochemical parameters of obese mice					
Groups	ALT (U/L)	AST (U/L)	TG (mmol/L)	TC (mmol/L)	Glu (mmol/L)
ND	44.92 ± 2.56	104.10 ± 6.56	1.49 ± 0.11	4.73 ± 0.20	3.40 ± 0.22
HFD	52.27 ± 1.83 [#]	$124.24 \pm 4.51^{\#}$	$2.22 \pm 0.11^{\#\#}$	$8.70 \pm 0.46^{\#\#\#}$	$7.45\pm0.89^{\#}$
HFD + 140 mg/kg Metformin	$43.05 \pm 1.96^{**}$	$99.65 \pm 7.22^{*}$	1.98 ± 0.18	$\boldsymbol{6.98 \pm 0.63^*}$	$4.06\pm0.69^{\ast}$
HFD + 0.1 mg/kg Isoquercitrin	58.74 ± 3.83	118.56 ± 6.87	$1.71\pm0.11^{\ast}$	8.66 ± 0.41	7.06 ± 0.33
HFD + 5 mg/kg Isoquercitrin	$40.69 \pm 1.75^{***}$	$102.17 \pm 7.07^{*}$	1.62± 0.03**	$\boldsymbol{6.42 \pm 0.70^{*}}$	$4.45\pm0.37^{\ast}$

ND: normal diet; HFD: high-fat diet; ALT: alanine aminotransferase; AST: aspartate aminotransferase; TG: triglyceride; TC: total cholesterol; GLU: glucose. Numbers of mice in each group are eight. #, ## and ### represent the difference between ND group and HFD group. *, **, and *** represent the difference between HFD group and treatment groups.

Groups	Liver	Spleen	Kidney	Heart	Epididymal Fat
ND	1.45 ± 0.04	0.09 ± 0.01	0.58 ± 0.02	0.21 ± 0.02	1.02 ± 0.15
HFD	$2.4 \pm 0.12^{\#\#\#}$	0.11 ± 0.01	$0.68\pm0.04^{\#}$	0.22 ± 0.02	$2.36 \pm 0.16^{\text{\#\#\#}}$
HFD + 140 mg/kg Metformin	$1.88 \pm 0.10^{**}$	0.11 ± 0.03	$0.57\pm0.03^{\ast}$	0.18 ± 0.01	$1.07 \pm 0.25^{***}$
HFD + 5 mg/kg AV	$1.81 \pm 0.11^{**}$	0.10 ± 0.01	$0.57\pm0.02^{\ast}$	0.19 ± 0.01	$1.62 \pm 0.25^{*}$
HFD + 0.1 mg/kg Isoquercitrin	2.06 ± 0.12	0.11 ± 0.01	0.66 ± 0.03	0.22 ± 0.01	1.90 ± 0.25
HFD + 0.5 mg/kg Isoquercitrin	$1.60 \pm 0.07^{***}$	0.09 ± 0.00	0.60 ± 0.02	$0.17\pm0.01^{\ast}$	$1.46 \pm 0.19^{**}$
HFD + 5 mg/kg Isoquercitrin	$1.56 \pm 0.02^{***}$	$0.08 \pm 0.00^{**}$	$0.60\pm0.01^{\ast}$	$0.17\pm0.01^{\ast}$	$1.47 \pm 0.18^{\ast\ast}$

 Table S2 ·
 Effect of Isoquercitrin on the weight of individual organs of obese mice

ND: normal diet; HFD: high-fat diet; AV: *A. venetum* L. Numbers of mice in each group are eight. # and ### represent the difference between ND group and HFD group. *,** and *** represent the difference between HFD group and treatment groups.

Tuble 50 Effect of Skiller Te und Halff it ministors on the weight of marriadan of gains of obese mile					
Groups	Liver	Spleen	Kidney	Heart	Epididymal Fat
ND	1.35 ± 0.04	0.09 ± 0.01	0.46 ± 0.03	0.18 ± 0.01	0.41 ± 0.07
HFD	$1.49\pm0.04^{\#}$	$0.12\pm0.01^{\#}$	$0.66 \pm 0.02^{\#\#}$	0.20 ± 0.01	$0.70 \pm 0.06^{\#\!\!\!/}$
HFD + 5 mg/kg Isoquercitrin	$1.36\pm0.04^{\ast}$	$0.09\pm0.00^{\ast}$	$0.45\pm0.03^{\ast}$	0.16 ± 0.01	$0.47\pm0.07^{\ast}$
HFD + 5 mg/kg Isoquercitrin + PF429242	1.47 ± 0.4	0.13 ± 0.01	0.59 ± 0.03	0.22 ± 0.01	0.74 ± 0.06
ND	1.25 ± 0.03	0.17 ± 0.01	0.50 ± 0.03	0.21 ± 0.00	0.48 ± 0.09
HFD	$2.27 \pm 0.18^{\# \# \#}$	0.16 ± 0.01	$0.69\pm0.06^{\#}$	0.21 ± 0.01	$1.49 \pm .05^{\# \# \#}$
HFD + 5 mg/kg Isoquercitrin	$1.12 \pm 0.09^{***}$	$0.08 \pm 0.00^{***}$	$0.46 \pm 0.02^{**}$	$0.17 \pm 0.00^{**}$	$0.62 \pm .08^{***}$
HFD + 5 mg/kg Isoquercitrin + Compound C	2.12 ± 0.09	0.12 ± 0.01	0.55 ± 0.03	0.18 ± 0.01	1.34 ± 0.16

Table S3 · Effect of SREBP-1c and AMPK inhibitors on the weight of individual organs of obese mice

ND: normal diet; HFD: high-fat diet. Numbers of mice in each group are six. # and ## represent the difference between ND group and HFD group. * represents the difference between HFD group and treatment groups.

Gene	Species	Sequences
SREBP-1C	mouse	sense: 5'-GCG CTA CCG GTC TTC TAT CA- 3'
	mouse	anti-sense: 5'-TGC TGC CAA AAG ACA AGG G-3'
FAS	mouse	sense: 5'-GAT CCT GGA ACG AGA ACA C- 3'
	mouse	anti-sense: 5'-AGA CTG TGG AAC ACG GTG GT-3'
SCD1	mouse	sense: 5'-CGA GGG TTG GTT GTT GAT CTG T- 3'
	mouse	anti-sense: 5'-ATA GCA CTG TTG GCC CTG GA-3'
CD36	mouse	sense: 5'-TCC TCT GAC ATT TGC AGG TCT ATC- 3'
	mouse	anti-sense: 5'-GTG AAT CCA GTT ATG GGT TCC AC-3'
GLUT1	mouse	sense: 5'-GTT TCA CAG CCC GCA CAG CTT GA-3'
	mouse	anti-sense: 5'-GCC CCT CCC ACG GCC AAC ATA-3'
GLUT2	mouse	sense: 5'-CAT CCA TCT TCC TCT TTG TCT G-3'
	mouse	anti-sense: 5'-GAT TTT CCT TTG GTT TCT GG-3'
GLUT4	mouse	sense: 5'-CCT GCC CGA AAG AGT CTA AAG C-3'
	mouse	anti-sense: 5'-ACT AAG AGC ACC GAG ACC AAC G-3'
188 RNA	mouse	sense: 5'-TAA CCC GTT GAA CCC CAT T-3'
	mouse	anti-sense: 5'-CCA TCC AAT CGG TAG TAG CG-3'

Table S4. Primers sequence in RT-PCR analysis of this study

Supplementary Figures

Supplementary Figure 1. Original western blot analysis of Figure 3C. Original western blot of AMPK, phospholation-AMPK and GAPDH.

Supplementary Figure 2. Original western blot analysis of Figure 9. Original western blot results of MTHFD1 (a), CBDR1 (b), GSTP1 (c) and β -actin (d) in Hela cells for Figure 9A, 9B and 9C, respectively. Original western blot results of MTHFD1 (a), CBDR1 (b) GSTP1 (c) and β -actin (d) in mice livers for Figure 9D, 9E and 9C, respectively

Supplementary Figure 3. The ¹H NMR spectrum of isoquercitrin from Apocynum venetum L