Electronic Supplementary Material (ESI) for Food & Function. This journal is © The Royal Society of Chemistry 2022

Table S1 Ingredient composition of the basal diet (%, as-fed basis)					
Component	Content	Nutrient composition ²	Level		
Corn	52.07	Metabolizable energy (MJ/kg)	12.38		
Wheat	5.00	СР	21.60		
Soybean meal (45% crude protein)	33.0	Ca	1.00		
Corn gluten meal (52% crude protein)	3.00	Total P	0.74		
Soybean oil	2.28	Available P	0.47		
L-Lysine HCl (98.5%)	0.25	Total Lys	1.29		
DL-Methionine (99%)	0.17	Total Met	0.52		
Limestone	1.25	Total Met+Cys	0.93		
Dicalcium phosphate	1.68	Total Thr	0.86		
Sodium chloride	0.30	Total Trp	0.21		
Premix ¹	1.00	Total Ile	0.77		
Total	100.00				

¹The premix provided per kilogram of diet: vitamin A, 12,000 IU; vitamin D₃, 600 IU; vitamin E, 45 mg; vitamin K₃, 2.5 mg; vitamin B₁, 2.4 mg; vitamin B₂, 5.0 mg; vitamin B₆, 3.5 mg; vitamin B₁₂, 0.01 mg; choline, 1,300 mg; nicotinic acid, 42 mg; pantothenic acid, 12 mg; folic acid, 1.00 mg; biotin, 0.12 mg; Fe, 80 mg; Cu, 7.0 mg; Mn, 80 mg; Zn, 85 mg; I, 0.70 mg; Se, 0.15 mg.

²Total Lys, Met, Met+Cys, Thr, Ile, and ME were calculated values in the mixed feed. CP was measured value.

Table S2 Primer seq	uences used for qua	antitative real-time PCR

	1 ab	ie 52 i filler sequences used for qualitie		
Genes	Direction	Primer sequence (5'-3')	NCBI References	Amplicon (bp)
OCIN	Forward	TCATCCTGCTCTGCCTCATCT	NM 205128-1	147
Reverse		CATCCGCCACGTTCTTCAC	14141_205120.1	177
ZO-1 Forward Reverse	Forward	CAAAGACAGCAGGAGGAGA XM_015278981_1		217
	Reverse	TGGCTAGTTTCTCTCGTGCA	AW_015276961.1	1 217
CIDNI	Forward	CTTCATCATTGCAGGTCTGTCAG	NM 001013611.2	102
CLDNI R	Reverse	AAATCTGGTGTTAACGGGTG	111/1_001013011.2	105
Forwar	Forward	CATTCAACGAGGAGAGCTGC	NM 001218424 1	248
MUC2	Reverse	TTCCTTGCAGCAGGAACAAC	1111_001310434.1	240
EYP	Forward	CAGAAAGAATGCAGCGGCTC	NM 204113.2	04
ΓΛΛ	Reverse	CAAACTGCCCCATTTTGCGA	NWI_204113.2	24
CDDC6A	Forward	TGAAATGCTGCAACCAGAAG	VM 040666655 2	217
UI ICOA	Reverse	GGACAGGAACCTCAGAGCAG	Alvi_040000055.2	217
CDDC51	Forward	AGCCAGGTTACGGAGGATTT	VM 040660408 2	20.9
GFACJA	Reverse	GATGCCAGCATACCACACAC	AWI_040000498.2	208
CDDC5D	Forward	CGAACATAATGCAGCGCTAA	VM 015204704 2	225
GFACJD	Reverse	GCCAGGGAATAATTCTGCAA	Alvi_015294794.2	223
CDDC5C	Forward	CCATCCTGAAGGAGCAGAAG	VM 040640806 1	162
GPRCSC	Reverse	TTGTGCATCAGAGCCATCTC	AWI_040049800.1	105
SIPT1	Forward	TAACATGGAGGCTTGGCTGA	NM 001004767 2	103
SIKT	Reverse	GACATCACTCGAAGCAGCAG	1111_001004707.2	195
SIRT2 Forward Reverse		CCACCGTTTGCCACTACTTC	NM 001017414 2	202
		TTCTCCTTCACCCAGCTCAG	1111_00101/414.2	202
SIRT3 Forward Reverse	ATCTTGTAGGACCGTTTGCC	NM 001100/03 1	173	
	GCCAGCTGTCCTATTTGTCT	INIVI_001199495.1	1/5	
SIPTA Forward	GCATTTCAAACCAGAGCCCA	XM 025155741.2	170	
511(14	Reverse	CTTGGCTGAGACCCTCTTCA	Alvi_025155741.2	177
SIRT5	Forward	TAAACATCCCAACGCTGCAC	NM 001276364 2	101
SIKIJ	Reverse	TTGCAGTCACGTTTCCACAG	1111_001270304.2	171
SIRT6	Forward	GGACCGACAACAATGAGCTC	NM 001039320.2	150
SIKTO	Reverse	AGCTCACACACCTTCCTCTC	INIVI_001039320.2	150
SIRT7	Forward	TCAAAACTGTGATGGGCTGC	NM 001201071 1	2/13
	Reverse	TGTGTCAGTGTCCCCTTCTC	INIVI_001291971.1	273
IL17A	Forward	GGAGAACTGCCTTGCCTAAC	NM 204460.2	165
	Reverse	CTCATGGAGCACGTTGGAAG	11112_204400.2	
11 22	Forward	AACTTCCAGCAGCCCTACAT	NM 00110061/1	192
11.44	Reverse	CTTGGCCTCTGTGAGAAGGA	14141_001177014.1	
R_actin	Forward	AAGCCAACAGAGAGAAGATGA	NM 205518	101
p-aciin	Reverse	ACCAGAGGCATACAGGGA		101

OCLN, occludin; *CLDN1*, claudin 1; *ZO-1*, Zona Occludens 1; *MUC2*, mucin 2; *FXR*, farnesoid X recptor; *GPRC6A*, G protein-coupled receptor class C group 6 member A; *GPRC5A*, G protein-coupled receptor class C group 5 member A; *GPRC5B*, G protein-coupled receptor class C group 5 member B; *GPRC5C*, G protein-coupled receptor class C group 5 member C. *SIRT1*, sirtuin 1; *SIRT2*, sirtuin 2; *SIRT3*, sirtuin 3; *SIRT4*, sirtuin 4; *SIRT5*, sirtuin 5; *SIRT6*, sirtuin 6; *SIRT7*, sirtuin 7; *IL17A*, interleukin 17A; *IL22*, interleukin 22.

optimized WiS/WIS conditions						
Metabolites	Q1	Q3	Declustering potential (ev)	Collision Energy (ev)		
CA		289.3	-130	-59		
	406.9	195.0	-130	-52		
CDCA	391.2	391.2	-130	-34		
DCA	391.2	343.4	-130	-53		
DCA	571.2	327.2	-130	-53		
LCA	375.2	375.2	-130	-7		

Table S3 Characteristic fragment ions of CA, CDCA, DCA, LCA standards and thei
optimized MS/MS conditions

CA, cholic acid; CDCA, chenodexycholic acid; DCA, deoxycholic acid; LCA, lithocholic acid.

Items	Saline		LPS		_	<i>P</i> -value		
	CON	CUR	CON	CUR	SEM	CUR	LPS	CUR×LPS
CD3 ⁺ (%)	19.60 ^b	29.00 ^a	14.22 ^c	18.91 ^b	0.712	< 0.001	< 0.001	0.004
CD4 ⁺ (%)	4.32 ^b	4.61 ^b	3.37°	5.39 ^a	0.208	< 0.001	0.679	< 0.001
CD8+ (%)	15.27 ^b	24.39ª	10.85 ^d	13.52°	0.566	< 0.001	< 0.001	0.036
CD4: CD8 ratio	0.28	0.30	0.32	0.40	0.025	0.023	0.018	0.266
BU_1+ (%)	17.16°	25.84 ^{ab}	31.83ª	22.93 ^{bc}	2.849	0.014	0.036	0.009

Table S4 Effects of curcumin (CUR) supplementation on the percentages of ileal Lamina propria lymphocytes expressing cell-surface antigens for CD3⁺, CD4⁺, CD8⁺, and BU_1⁺

Values are mean and pooled SEM, n = 12. Means with no common superscript in the same row are significantly different (P < 0.05).

CD3⁺, CD3⁺ T-lymphocyte subset; CD4⁺, CD4⁺ T-lymphocyte subset; CD8⁺, CD8⁺ T-lymphocyte subset; BU_1⁺, BU_1⁺ B cells.

FIGURE S1. Score plots of principal component analysis derived from GC-MS data showing the metabolism differences of digesta samples among different treatment groups of chickens.

FIGURE S2. The heat map of Log2 fold change (Log2FC) of all metabolites identified by GC-MS. The fold change of each metabolite between every pair-wise comparison was computed as the ratio of their mean abundance. Note that: CON_Saline, chickens fed the control diet and injected with saline; CUR_Saline, chickens fed the curcumin diet and injected with saline; CON_LPS, chickens fed the control diet and challenged with LPS; CUR_LPS, chickens fed the curcumin diet and challenged with LPS.