Supplementary material for

Efficient discovery of potent α-glucosidase inhibitors from *Paeoniae lactiflora* by enzyme-MOFs nanocomposite and competitive indicator Xinlin Chen,^a Ying Wu,^a Yucheng Gu,^b Jianguang Luo,^{a,*} Lingyi Kong^{a,*}

^a State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.

^b Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom

E-mail addresses: lykong@cpu.edu.cn (L.-Y. Kong); luojg@cpu.edu.cn (J.-G. Luo).

Support information list

Characterization of UiO-66-NH ₂ .	4
Fig. S1. SEM image and XRD spectrum of UiO-66-NH ₂	4
Performance testing of GAA@UiO-66-NH ₂	4
Figure S2. Effects of pH and temperature on the activity of free GAA and GAA@UiO-6	66-NH ₂ .
	4
Figure S3. Lineweaver-Burk double reciprocal plots of NG	5
Figure S4. The fluorescence spectra of compound 5.	5
Figure S5. HPLC chromatograms obtained from the samples that using	NG as
indicator	6
Figure S6. HPLC chromatogram of PS extract	6
Table S1. Experimental data for the relative activity recovery	7
Table S2. Experimental data for the protein loading capacity	7
Table S3. Retention time and MS data of compounds in eluent of Paeoniae lactiflor	a seeds
sample (PS-E) by HPLC-Q-TOF-MS/MS	7
Procedures of synthesizing the indicator.	8
Extraction and isolation	10
Figure S7. The structure of potent inhibitors screened from Paeoniae lactiflora seeds by	y ligand
fishing based on competitive indicator and GAA@UiO-66-NH2	14
Figure S8. ¹ H NMR spectrum of 4-pentyn-1-tosylate (500 MHz, CDCl ₃)	14
Figure S9. ¹ H NMR spectrum of compound 2 (500 MHz, CD ₃ OD)	15
Figure S10. ¹³ C NMR spectrum of compound 2 (125 MHz, CD ₃ OD)	15
Figure S11. HRESIMS spectrum of compound 2	16
Figure S12. ¹ H NMR spectrum of 1-azidopropyl-3-tosylate (500 MHz, CDCl ₃)	16
Figure S13. ¹³ C NMR spectrum of 1-azidopropyl-3-tosylate (125 MHz, CDCl ₃)	17
Figure S14. HRESIMS spectrum of 1-azidopropyl-3-tosylate.	17
Figure S15. ¹ H NMR spectrum of compound 4 (500 MHz, CDCl ₃)	18
Figure S16. ¹³ C NMR spectrum of compound 4 (125 MHz, CDCl ₃)	18
Figure S17. HRESIMS spectrum of compound 4	19
Figure S18. ¹ H NMR spectrum of compound 5 (500 MHz, CD ₃ OD)	20
Figure S19. ¹³ C NMR spectrum of compound 5 (125 MHz, CD ₃ OD)	20
Figure S20. HRESIMS spectrum of compound 5	21
Figure S21. ¹ H NMR spectrum of Suffruticosol A (600 MHz, CD ₃ OD).	22
Figure S22. ¹³ C NMR spectrum of Suffruticosol A (150 MHz, CD ₃ OD)	22
Figure S23. HRESIMS spectrum of Suffruticosol A.	23
Figure S24. ¹ H NMR spectrum of Suffruticosol B (600 MHz, CD ₃ OD)	23
Figure S25. ¹³ C NMR spectrum of Suffruticosol B (150 MHz, CD ₃ OD)	24
Figure S26. HRESIMS spectrum of Suffruticosol B	24

Figure S27. ¹ H NMR spectrum of Resveratrol (600 MHz, CD ₃ OD)	25
Figure S28. ¹³ C NMR spectrum of Resveratrol (150 MHz, CD ₃ OD)	25
Figure S29. ¹ H NMR spectrum of Vitisin E (600 MHz, CD ₃ COCD ₃)	26
Figure S30. ¹³ C NMR spectrum of Vitisin E (150 MHz, CD ₃ COCD ₃)	26
Figure S31. HRESIMS spectrum of Vitisin E.	27
Figure S32. ¹ H NMR spectrum of Luteolin (500 MHz, CD ₃ OD)	
Figure S33. ¹³ C NMR spectrum of Luteolin (125 MHz, CD ₃ OD)	
Figure S34. HRESIMS spectrum of Luteolin.	
Figure S35. ¹ H NMR spectrum of Ampelopsin E (600 MHz, CD ₃ COCD ₃)	
Figure S36. ¹³ C NMR spectrum of Ampelopsin E (150 MHz, CD ₃ COCD ₃)	
Figure S37. HRESIMS spectrum of Ampelopsin E.	
Figure S38. ¹ H NMR spectrum of Paeoniflorin (600 MHz, CD ₃ OD)	
Figure S39. ¹³ C NMR spectrum of Paeoniflorin (150 MHz, CD ₃ OD)	
Figure S40. HRESIMS spectrum of Paeoniflorin	33
Reference	

Characterization of UiO-66-NH₂. The synthesized UiO-66-NH₂ exhibited a representative XRD pattern in consistent with the reported UiO-66 topology (Fig. S1B). Besides, observing from the figure S1A, the UiO-66-NH₂ powder had regular structure, smooth surface, and high crystallinity. All the above-mentioned results revealed that the UiO-66-NH₂ was successfully synthesized and could be the vehicle for immobilizing enzyme.

Fig. S1. SEM image (A) and XRD spectrum (B) of UiO-66-NH₂.

Performance testing of GAA@UiO-66-NH₂. Briefly, 1 μ L of GAA@UiO-66-NH₂ (5 mg/ml) and free GAA (1 mg/ml) were diluted with 59 μ L PBS, respectively, and then was incubated with 40 μ L *p*NPG at different temperatures ranging from 20 °C to 45 °C for 10 min. The activity of GAA@UiO-66-NH₂ was determined as above-mentioned. Besides, GAA@UiO-66-NH₂ and free GAA were incubated with *p*NPB in 50 mM PBS at different pH values (6.0-10.0) for 10 min at 37 °C, respectively, and the activity was then measured accordingly.

Figure S2. (A) Effects of pH and (B) temperature on the activity of free GAA and GAA@UiO-

66-NH₂.

Figure S3. Lineweaver-Burk double reciprocal plots of NG, $c(GAA) = 0.5 \text{ U mL}^{-1}$, c(pNPG) =

0.3125, 0.625. 1.25, 2.5, 5 mM.

Figure S4. The fluorescence spectra of compound 5 in PBS (50 mM, pH 6.8).

Figure S5. HPLC chromatograms obtained from the samples that using NG as indicator. E2A' was sample acquired from GAA@UiO-66-NH₂ incubation with indicator and mixed sample (contained resveratrol and (+)-catechin). E2B' was sample acquired from GAA@UiO-66-NH₂ only incubation with mixed sample (contained resveratrol and (+)-catechin).

Figure S6. HPLC chromatogram of PS extract

Table S1. Experimental data for the relative activity recovery.

	Free GAA	GAA@UiO-66-NH ₂
Activity (U)	0.30	0.14

Table S2. Experimental data for the protein loading capacity.

Washing time	0	1	2	3
Protein amount of supernatant (µg)	555.68	171.32	15.52	8.50

Table S3. Retention time and MS data of compounds in eluent of Paeoniae lactiflora seeds

sample (PS-E) by HPLC-Q-TOF-MS/MS.

Deals	t _r (min)	Ions	MS/MS fragment	Elemental composition	Malaaylan fammyia
геак	t <i>R</i> (IIIII)	(m/z)	mass (m/z)	Elemental composition	Molecular formula
1	12.077	687.2163 [M+COOH]-	641.2090,	C29H38O16	Isomaltopaeoniflorin
			519.1720,		
			323.0989,		
2	13.048	525.1628 [M-H] ⁻	525.1624	$C_{24}H_{30}O_{13}$	Mudanpioside E
3	16.596	687.2125 [M+COOH]-	593.1884,	C29H38O16	6'-O-β-D-glucopyranosylalbiflorin
			489.1620,		
			323.0991,		
			165.0557		
4	18.280	525.1641 [M+COOH]-	449.1459,	$C_{23}H_{28}O_{11}$	Paeoniflorin
			327.1089,		
			165.0557		
5	25.218	725.2036 [M+COOH]-	679.1981,	C42H32O9	Suffruticosol A
			585.1562,		
			479.1129		
6	30.478	725.2041 [M+COOH]-	679.1986,	C42H32O9	Suffruticosol B
			585.1573		
7	37.631	227.0727 [M -H] ⁻	227.0727	$C_{14}H_{12}O_{3}$	Resveratrol
8	40.583	723.1890	583.1403	-	-
9	53.254	499.1423 [M+COOH]-	453.1353,	C ₂₈ H ₂₂ O ₆	Trans-E-viniferin
			347.0925,		
			225.0559		
10	55.702	679.1983 [M-H] ⁻	679.2001	C42H32O9	Vitisin E
11	56.497	285.0422 [M-H] ⁻	285.0441,	$C_{15}H_{10}O_{6}$	Luteolin
			133.0295		
12	58.012	725.2069 [M+COOH]-	679.1993,	$C_{42}H_{32}O_9$	-
			585.1565		
13	58.413	725.2039 [M+COOH] ⁻	679.1988,	C42H32O9	Ampelopsin E
			585.1562		
14	60.480	499.1404	453.1360	-	-
15	62.007	329.0671	329.0671	-	-

Procedures of synthesizing the indicator.

4-Pentyn-1-tosylate: It was obtained from the reaction of pent-4-yn-1-ol (11.87 mmol, 1 g), triethylamine (11.87 mmol, 1.65 mL) and tosyl chloride (15.45 mmol, 2.94 g) which were dissolve in dichloromethane (DCM) at 0 °C to room temperature. The crude product was purified by column chromatography using 200-300 mesh silica gel with ethylacetate: *n*-hexane as eluent and 4-pentyn-1-tosylate was obtained as viscous transparent liquid. Yield 1.8 g, 63%. ¹H NMR (500 MHz, CDCl₃): δ 7.77 (2H, J = 8.3 Hz, d), 7.33 (2H, J = 8.0 Hz, d), 4.12 (2H, m), 2.42 (3H, s), 2.23 (2H, J = 6.9, 2.6 Hz, td), 1.87 (1H, J = 3.6, 1.6 Hz, dd), 1.83 (2H, m).

Compound 2: Potassium carbonate (2.46 mmol, 338 mg) was added to a solution of deoxynojirimycin (1.23 mmol, 200 mg) and 4-pentyn-1-tosylate (1.47 mmol, 350 mg) in DMF. The reaction mixture was heated to 80 °C for 24 h under argon. The DMF was evaporated under reduced pressure. The crude product was purified by column chromatography using 200-300 mesh silica gel with dichloromethane: methanol as eluent and compound 2 was obtained as transparent crystals. Yield 123.9 mg, 44 %. ¹H NMR (500 MHz, CD₃OD): δ 3.86 (1H, *J* = 11.8, 2.4 Hz, dd), 3.80 (1H, *J* = 11.9, 2.9 Hz, dd), 3.55 (1H, *J* = 12.2, 7.5, 4.5 Hz, ddd), 3.42 (1H, m), 3.27 (1H, m), 3.09 (1H, *J* = 9.1 Hz, t), 2.94 (1H, *J* = 11.2, 4.9 Hz, dd), 2.87 (1H, m), 2.63 (1H, *J* = 19.8, 6.9 Hz, dt), 2.15 (3H, *J* = 20.2, 9.0 Hz, dt), 2.07 (1H, *J* = 9.5, 2.7 Hz, dt), 1.65 (2H, m). ¹³C NMR (125 MHz, CD₃OD): δ 80.53, 78.88, 75.85, 72.05, 70.75, 67.36, 59.51, 57.79, 52.52, 24.52, 16.89. ESI-HRMS *m*/*z* 230.1386 [M + H]⁺ (calcd for C₁₁H₂₀NO4, 230.1387).

1-Azidopropyl-3-tosylate (Compound 3): Triethylamine (4.02 mmol, 0.56 mL) was added in the mixture solution of 3-Azido-1-propanol (3.96 mmol, 400 mg) and tosyl chloride (4.28 mmol, 816 mg) dissolved in DCM. The reaction was stirred at 0 - room temperature until completion. After completion (TLC), the reaction mixture was partitioned between dichloromethane and water. Organic layer was separated and dried over anhydrous sodium sulphate (Na₂SO₄) and evaporated under reduced pressure. The obtained crude derivative was purified by column chromatography using 200-300 mesh silica gel with ethyl acetate: *n*-hexane as eluent to afford product. Yield, 543

mg, 54%.¹H NMR (500 MHz, CDCl₃): δ 7.80 (2H, J = 8.2 Hz, d), 7.36 (2H, J = 8.0 Hz, d), 4.11 (2H, J = 5.9 Hz, t), 3.38 (2H, J = 6.5 Hz, t), 2.46 (3H, s), 1.89 (2H, m). ¹³C NMR (125 MHz, CDCl₃): δ 145.63, 133.43, 130.54, 128.52, 67.58, 47.91, 29.09, 22.26. ESI-HRMS *m*/*z* 278.0569 [M + Na]⁺ (calcd for C₁₀H₁₃N₃O₃SNa, 278.0570).

Compound 4: Potassium carbonated (1.5 mmol, 208 mg) was added to a solution of 7-hydroxy-4-(trifluoromethyl) coumarin (0.75 mmol, 174 mg) and 1-azidopropyl-3-tosylate (0.81 mmol, 205 mg) in 5 mL DMF. The mixture was reacted at room temperature for 12 h under argon. Most of the DMF was evaporated under reduced pressure. The residue was dissolved in ethyl acetate, washed twice with water, and then dried over anhydrous Na₂SO₄. After filtration, the solvent was removed. The crude product was purified via silica gel column chromatography using petroleum ether: ethyl acetate and afford **4** as colorless prisms. Yield 198 mg, 84%. ¹H NMR (500 MHz, CDCl₃): δ 7.61 (1H, *J* = 9.0, 1.7 Hz, dd), 6.90 (1H, *J* = 9.0, 2.5 Hz, dd), 6.85 (1H, *J* = 2.5 Hz, d), 6.60 (1H, s), 4.12 (2H, *J* = 5.9 Hz, t), 3.53 (2H, *J* = 6.5 Hz, t), 2.08 (2H, m). ¹³C NMR (125 MHz, CDCl₃): δ 163.10, 159.92, 156.85, 142.11 (q, *J* = 32.8 Hz), 128.48, 126.99, 114.11, 112.98 (q, *J* = 5.7 Hz), 107.80, 102.54, 65.87, 48.50, 29.04. ESI-HRMS *m/z* 336.0564 [M + Na]⁺ (calcd for C₁₃H₁₀F₃N₃O₃Na, 336.0566).

Compound 5: Copper (II) sulfate (0.025 mmol, 4 mg) and L-ascorbic acid (0.076 mmol, 13 mg) were added to a solution of compound **4** (0.54 mmol, 169 mg) and compound **5** (0.54 mmol, 124 mg) in 4.5 mL of H₂O/DMF (1:2). The reaction mixture was stirred at room temperature for 12 h under argon. Most of the DMF and H₂O were purified via silica gel column chromatography using dichloromethane: methanol to afford transparent crystals. Yield 92.7 mg, 32%. ¹H NMR (500 MHz, CD₃OD): δ 7.80 (1H, s), 7.65 (1H, m), 6.99 (1H, *J* = 9.1, 2.1 Hz, dq), 6.96 (1H, *J* = 2.5 Hz, t), 6.72-6.66 (1H, m), 4.59 (2H, *J* = 6.8 Hz, t), 4.11 (2H, *J* = 5.8 Hz, t), 3.79 (2H, m), 3.44 (1H, *J* = 10.5, 9.1, 4.8 Hz, ddd), 3.33 (1H, m), 3.11 (1H, *J* = 9.0 Hz, t), 2.98 (1H, *J* = 11.1, 4.9 Hz, dd), 2.86 (1H, *J* = 13.4, 9.8, 6.5 Hz, ddd), 2.68 (2H, *J* = 7.5 Hz, t), 2.53 (1H, *J* = 13.7, 9.4, 4.8 Hz, ddd), 2.41 (2H, *J* = 6.4 Hz, p), 2.11 (1H, *J* = 10.9 Hz, t), 2.06 (1H, *J* = 9.5, 2.8 Hz, dt), 1.84 (2H, m). ¹³C NMR (125 MHz, CD₃OD): δ 164.13, 160.86, 157.65, 148.84, 127.39, 127.38, 123.60, 114.65, 113.75, 113.73, 108.25, 103.19, 80.58, 71.98, 70.77, 67.62, 66.68, 59.34, 57.65, 52.65, 48.12, 30.71, 25.52, 23.87.

ESI-HRMS m/z 543.2064 [M + H]⁺ (calcd for C₂₄H₃₀F₃N₄O₇, 543.2061).

Extraction and isolation

0.1% formic acid was added to all solvents unless otherwise indicated. The air-dried and powdered aerial parts of *Paeoniae lactiflora* seeds (500 g) were extracted by ultrasonic extraction with 80% (v/v) aqueous EtOH (2L×3). After filtration, the EtOH extract was evaporated under reduced pressure to yield a crude extract (22 g), which was subjected to ODS column chromatography (CC) and eluted with a gradient solvent system of MeOH-H₂O (10:90, 20:80, 30:70, 40:60, 50:50, 60:40, 70:30, 100:0, v/v) to obtain twelve subfractions (Fr. PS1-12). Fr. PS3 was applied to ODS CC eluted with gradient MeOH-H₂O (15:85-19:81, v/v) to afford subfractions (Fr. PS3-21) and acquired paeoniflorin (6 mg). Fr. PS4 was applied to ODS CC eluted with isocratic MeOH-H₂O (20:80, v/v) to afford subfractions (Fr. PS4-1......Fr. PS4-58) and yield suffruitcosol A (280 mg). Then, Fr. PS4-58 was further purified by preparative HPLC (MeOH-H₂O, 40:60, v/v) to yield resveratrol. Fr. PS9 and Fr. PS11 were separated together on silica gel CC eluting with PE-EtOAe solvent system (10:7, 1:1, 0:1, v/v) to give forty-four fractions and yield luteolin (95 mg). Fr. PS9-41 was further purified by preparative HPLC (MeOH-H₂O, 43:57, v/v) to yield Vitisin E (33 mg) and Ampelopsin E (89 mg).

Structural identification of *a*-glucosidase inhibitors in extract of PS by NMR data.

Suffruticosol A: light yellow powder; negative HRESIMS *m/z* 725.2031 [M+COOH]⁻ (calcd. for C₄₃H₃₃O₁₁, 725.2028); ¹H-NMR (500 MHz, CD₃OD) δ 7.12 (2H, d, *J* = 1.7 Hz, H-2", 6"), 6.97 (2H, d, *J* = 8.1 Hz, H-2, 6), 6.70 (2H, d, *J* = 8.3 Hz, H-3", 5"), 6.50 (2H, d, *J* = 8.2 Hz, H-2', 6'), 6.39 (2H, d, *J* = 8.1 Hz, H-3, 5), 6.27 (1H, d, *J* = 2.2 Hz, H-12"), 6.22 (1H, s, H-12'), 6.14 (2H, d, *J* = 8.1 Hz, H-3', 5'), 6.08 (1H, t, *J* = 2.3 Hz, H-12), 6.01 (2H, d, *J* = 2.3 Hz, H=10, 14), 5.95 (1H, d, *J* = 2.3, H-14"), 5.70 (1H, d, *J* = 11.7 Hz, H-7"), 5.45 (1H, d, *J* = 3.3 Hz, H-7'), 4.76 (1H, s, H-8), 4.37 (1H, d, *J* = 11.7 Hz, H-8"), 3.96 (1H, dt, *J* = 6.3, 2.2 Hz, H-8'), 3.71 (1H, d, *J* = 7.7 Hz, H-7). ¹³C NMR (151 MHz, CD₃OD) δ 160.16 (C-11"), 159.26 (C-11, 13), 158.92 (C-4"), 156.66 (C-13"), 156.48 (C-4), 155.12 (C-13'), 154.94 (C-11"), 130.74 (C-2', 6'), 130.72 (C-2, 6), 130.45 (C-2", 6"), 126.94 (C-10) (C-10) (C-10) (C-10) (C-10) (C-10) (C-10) (C-10) (C-2', 6'), 130.72 (C-2, 6), 130.45 (C-2", 6"), 126.94 (C-10) (C-10) (C-10) (C-10) (C-10) (C-10) (C-10) (C-10) (C-2', 6'), 130.72 (C-2, 6), 130.45 (C-2", 6"), 126.94 (C-10) (C-10) (C-10) (C-10) (C-10) (C-10) (C-2', 6'), 130.72 (C-2, 6), 130.45 (C-2", 6"), 126.94 (C-10) (C-2) (C-2)

10"), 123.01 (C-14'), 117.26 (C-10'), 116.24 (C-3", 5"), 115.44 (C-3, 5), 114.16 (C-3', 5'), 106.84 (C-10, 14), 105.94 (C-14"), 101.93 (C-12"), 101.37 (C-12), 96.22 (C-12'), 91.48 (C-7"), 61.04 (C-7), 54.55 (C-8), 48.78 (C-8"), 48.58(C-8'), 39.75 (C-7'). According to the reported research¹, Fr. PS4-46 was identified as suffruticosol A.

Suffruticosol B: yellow powder; negative HRESIMS *m/z* 725.2030 [M+COOH]⁻ (calcd. for C₄₃H₃₃O₁₁, 725.2028); ¹H-NMR(600 MHz, CD₃OD) δ 7.58 (2H, d, *J* = 12 Hz, H-2", 6"), 6.92 (2H, brs, H-2', 6'), 6.91 (2H, d, *J* = 12 Hz, H-3", 5"), 6.51 (2H, d, *J* = 6 Hz, H-3', 5'), 6.29 (2H, d, *J* = 12 Hz, H-3, 5), 6.25 (2H, d, *J* = 6 Hz, H-2, 6), 6.23 (1H, s, H-10), 6.22 (1H, s, H-14), 6.19 (1H, s, H-12'), 6.18 (1H, d, *J* = 6 Hz, H-12"), 5.95 (1H, t, H-12), 5.95 (1H, d, *J* = 2.4 Hz, H-14"), 5.87 (1H, d, *J* = 12 Hz, H-7"), 5.08 (1H, d, *J* = 12 Hz, H-8"), 4.22 (1H, d, *J* = 12 Hz, H-7'), 4.11 (1H, m, H-8'), 4.09 (1H, s, H-8), 3.81 (1H, d, *J* = 6 Hz, H-7). ¹³C NMR (151 MHz, CD₃OD) δ 160.18 (C-11'), 159.36 (C-11, 13), 159.10 (C-4"), 158.38 (C-13"), 157.15 (C-11"), 156.13 (C-4'), 156.03 (C-4), 155.72 (C-13'), 147.47 (C-9'), 147.46 (C-9), 142.38 (C-9"), 135.52 (C-1), 133.80 (C-1), 133.04 (C-2', 6'), 130.92 (C-1"), 130.51 (C-2", 6"), 129.47 (C-2, 6), 123.57 (C-14'), 122.86 (C-10"), 118.49 (C-10'), 116.52 (C-3", 5"), 115.17 (C-3, 5), 114.72 (C-3', 5'), 107.36 (C-10, 14), 104.98 (C-12"), 103.72 (C -14"), 101.48 (C-12), 96.26 (C-12'), 91.10 (C-7"), 63.07 (C-7), 56.87 (C-8), 49.10 (C-8"), 47.81 (C-8'), 46.46 (C-7'). According to the reported research¹, Fr. PS4-58-2 was identified as suffruticosol B.

Resveratrol: white powder; ¹H NMR (600 MHz, CD₃OD) δ 7.37 (2H, d, J = 8.3Hz, H-2', 6'), 6.96 (1H, d, J = 16.2 Hz, H- β), 6.81 (1H, d, J = 16.2 Hz, H- α), 6.77 (2H, d, J = 8.3 Hz, H-3', 5'), 6.46 (2H, d, J = 2.2 Hz, H-2, 6), 6.17 (1H, t, J = 2.2 Hz, H-4). ¹³C NMR (151 MHz, CD₃OD) δ 159.64(C-3), 158.36(C-4'), 141.30(C-1), 130.41(C-1'), 129.38(C-2'), 128.78(C- β), 127.00(C- α), 116.48(C-3'), 105.75(C-2), 102.63(C-4). According to the reported research², Fr. PS6-3 was identified as resveratrol.

Vitisin E: colorless crystalline powder; negative HRESIMS m/z 725.2036 [M+COOH]⁻ (calcd. for C₄₃H₃₃O₁₁, 725.2028); ¹H NMR (600 MHz, CD₃COCD₃) δ 7.17 (2H, d, J = 8.2 Hz, H-2", 6"), 7.11 (2H, d, J = 8.2 Hz, H-2, 6), 6.80 (4H, m, H-3, 5, 3", 5"), 6.60 (4H, m, H-2', 3', 5', 6'), 6.41 (1H, s,

H-12), 6.36 (2H, s, H-10", 14"), 6.34 (1H, s, H-12"), 6.25 (1H, s, H-14), 6.18 (1H, s, H-12'), 5.81 (1H, d, J = 11.4 Hz, H-7), 5.45 (1H, d, J = 4.0 Hz, H-7"), 5.01 (1H, s, H-7'), 4.29 (1H, d, J = 4.0 Hz, H-8"), 4.25 (1H, d, J = 11.5 Hz, H-8), 3.28 (1H, m, H-8' α), 2.82 (1H, d, J = 18.0 Hz, H-8' β). ¹³C NMR (151 MHz, CD₃COCD₃) δ 160.93 (C-13'), 160.35 (C-11'), 160.03 (C-11", 13"), 158.46 (C-4), 158.06 (C-4"), 157.18 (C-11), 156.60 (C-13), 155.88 (C-4'), 147.29 (C-9"), 142.41 (C-9), 134.78 (C-9'), 134.50 (C-1"), 134.26 (C-1'), 130.94 (C-1), 129.97 (C-2, 6), 128.30 (C-2', 6'), 127.62 (C-2", 6"), 122.43 (C-10), 121.27 (C-10'), 120.08 (C-14'), 116.10 (C-3", 5"), 115.98 (C-3, 5), 115.66 (C-3', 5'), 107.10 (C-10", 14"), 105.37 (C-14), 102.16 (C-12"), 101.36 (C-12), 93.81 (C-7"), 90.42 (C-12'), 88.57 (C-7), 57.08 (C-8"), 49.25(C-8), 35.63 (C-7'), 30.47 (C-8'). According to the reported research³, Fr. PS8-2 was identified as vitisin E.

Luteolin: yellow powder; negative HRESIMS m/z 285.0414 [M-H]⁻ (calcd. for C₁₅H₉O₆, 285.0405); ¹H NMR (500 MHz, CD₃SOCD₃) δ 7.42 (1H, d, J = 2.3 Hz, H-6'), 7.40 (1H, s, H-2'), 6.90 (1H, d, J = 8.4 Hz, H-5'), 6.67 (1H, s, H-3), 6.46 (1H, d, J = 2.1 Hz, H-8), 6.20 (1H, d, J = 2.1 Hz, H-6). ¹³C NMR (126 MHz, CD₃SOCD₃) δ 181.64 (C-4), 164.15 (C-2), 163.88 (C-7), 161.44 (C-9), 157.26 (C-5), 149.69 (C-4'), 145.73 (C-3'), 121.47 (C-1'), 118.95 (C-6'), 116.04 (C-5'), 113.37 (C-2'), 103.67 (C-10), 102.84 (C-3), 98.83 (C-6), 93.85 (C-8). According to the reported research⁴, Fr. PS9-25 was identified as luteolin.

Ampelopsin E: colorless crystalline powder; negative HRESIMS *m/z* 679.1965 [M-H]⁻ (calcd. for C₄₃H₃₁O₉, 679.1974); ¹H NMR (600 MHz, CD₃COCD₃) δ 7.27 (4H, d, *J* = 8.5 Hz, H-2, 6, 2", 6"), 6.88 (4H, d, *J* = 8.5 Hz, H-3, 5, 3", 5"), 6.86 (2H, d, *J* = 8.5 Hz, H-2', 6'), 6.62 (1H, d, *J* = 16 Hz, H-7'), 6.60 (1H, d, *J* = 16 Hz, H-8'), 6.57 (2H, d, *J* = 8.5 Hz, H-3', 5'), 6.47 (1H, s, H-12'), 6.25 (4H, d, *J* = 2.2 Hz, H-10, 14, 10", 14"), 6.22 (2H, t, *J* = 2.2 Hz, H-12, 12"), 5.48 (2H, d, *J* = 5.1 Hz, H-7, 7"), 4.56 (2H, d, *J* = 5.1 Hz, H-8, 8"). ¹³C NMR (151 MHz, CD₃COCD₃) δ 162.54(C-11', 13'), 159.85(C-11, 13, 11", 13"), 158.15(C-4, 4"), 158.06(C-4'), 147.35(C-9, 9"), 133.97(C-8'), 133.83(C-1, 1"), 133.09(C-1'), 130.15(C-9'), 128.56(C-2', 6'), 127.92(C-2, 6, 2", 6"), 122.24(C-7'), 119.99(C-10', 14'), 116.13(C-3, 5, 3", 5"), 116.04(C-3', 5'), 106.94(C-10, 14, 10", 14"), 101.98(C-12, 12"), 94.02(C-7, 7"), 91.30(C-12'), 57.94(C-8, 8"). According to the reported research⁵, Fr. PS91-4-2 was identified as ampelopsin E.

Paeoniflorin: colorless crystalline powder; ¹H NMR (600 MHz, CD₃OD) δ 8.06 (1H, d, J = 7.7 Hz, H-6"), 7.62 (1H, t, J = 7.3 Hz, H-4"), 7.50 (1H, t, J = 7.6 Hz, H-5"), 5.43 (1H, s, H-9), 4.75 (2H, t, J = 8.6 Hz, H-8), 4.54 (1H, d, J = 7.6 Hz, H-1'), 3.86 (1H, d, J = 12.0 Hz, H-6'α), 3.62 (1H, dd, J = 12.0, 4.6 Hz, H-6'β), 3.36-3.20 (4H, m), 2.60 (1H, d, J = 6.7 Hz, H-5), 2.50 (1H, dd, J = 11.1, 6.7 Hz, H-7α), 2.20 (1H, d, J = 12.6 Hz, H-3α), 1.97 (1H, d, J = 11.0 Hz, H-7β), 1.82 (1H, d, J = 12.6 Hz, H-3β), 1.38 (3H, s). ¹³C NMR (151 MHz, CD₃OD) δ 168.00 (C-7"), 134.44 (C-4"), 131.18 (C-1"), 130.73 (C-6"), 130.67 (C-2"), 129.64 (C-3"), 129.60 (C-5"), 106.40 (C-4), 102.28 (C-9), 100.17 (C-1'), 89.33 (C-1), 87.25 (C-2), 78.03 (C-3'), 77.93 (C-5'), 75.00 (C-2'), 72.22 (C-6), 71.73 (C-4'), 62.86 (C-6'), 61.71 (C-8), 44.53 (C-3), 43.95 (C-5), 23.41 (C-7), 19.61 (C-2-CH₃). According to the reported research⁶, Fr. PS3-19 was identified as Paeoniflorin.

Figure S7. The structure of potent inhibitors screened from *Paeoniae lactiflora* seeds by ligand fishing based on competitive indicator and GAA@UiO-66-NH₂.

Figure S8. ¹H NMR spectrum of 4-pentyn-1-tosylate (500 MHz, CDCl₃).

Figure S10. ¹³C NMR spectrum of compound 2 (125 MHz, CD₃OD).

Elemental Composition Calculator

Target m/z:	230.1386	Result type:	Positive ions	Species:	$[M+H]^+$	
Elements:		C (0-80); H (0-120); O (0-30) ; N(0-5)				
Ion Fo	Ion Formula		Calcalated m/z		rror	
C11H20NO4		230.1387		0.54		

Figure S11. HRESIMS spectrum of compound 2.

Figure S12. ¹H NMR spectrum of 1-azidopropyl-3-tosylate (500 MHz, CDCl₃).

Figure S13. ¹³C NMR spectrum of 1-azidopropyl-3-tosylate (125 MHz, CDCl₃).

Elemental Composition Calculator

Target m/z:	278.0569	Result type:	Positive ions	Species:	[M+Na] ⁺
Elements:		C (0-80); H (0-120); O (0-30); Na (0-5)); N (0-5)); S (0-5)			
Ion For	Ion Formula		Calculated m/z		ror
C10H13N3NaO3S		278.0570		0.45	

Figure S14. HRESIMS spectrum of 1-azidopropyl-3-tosylate.

Figure S16. ¹³C NMR spectrum of compound 4 (125 MHz, CDCl₃).

Elemental Composition Calculator

Target m/z:	336.0564	Result type:	Positive ions	Species:	[M+Na] ⁺
Elements:		C (0-80); H (0-120); O (0-30); Na (0-5)); N (0-5)); F (0-5)			
Ion Formula		Calculated m/z		PPM Error	
C13H10F3N3NaO3		336.0566		0.69	

Figure S17. HRESIMS spectrum of compound 4.

Figure S19. ¹³C NMR spectrum of compound 5 (125 MHz, CD₃OD).

Elemental Composition Calculator

Target m/z:	543.2064	Result type:	Positive ions	Species:	$[M+H]^+$	
Elements:		C (0-80); H (0-120); O (0-30) ; N(0-5); F(0-5)				
Ion Formula		Calcalated m/z		PPM Error		
C24H30F3N4O7		543.2061		-0.56		

Figure S20. HRESIMS spectrum of compound 5.

Figure S21. ¹H NMR spectrum of Suffruticosol A (600 MHz, CD₃OD).

Figure S22. ¹³C NMR spectrum of Suffruticosol A (150 MHz, CD₃OD).

Elemental Composition Calculator

Target m/z:	725.2031	Result type:	Negative ions	Species:	[M+COOH]
Elements:		C (0-80); H (0-120); O (0-30); N(0-5)			
Ion Formula		Calculated m/z		PPM Error	
C43H33O11		725.2028		-0.39	

Figure S24. ¹H NMR spectrum of Suffruticosol B (600 MHz, CD₃OD).

Figure S25. ¹³C NMR spectrum of Suffruticosol B (150 MHz, CD₃OD).

Elemental Composition Calculator

Target m/z:	725.2030	Result type:	Negative ions	Species:	[M+COOH]
Elements:		C (0-80); H (0-120); O (0-30); N(0-5)			
Ion Formula		Calculated m/z		PPM Error	
C43H33O11		725.2028		-0.26	

Figure S26. HRESIMS spectrum of Suffruticosol B.

Figure S28. ¹³C NMR spectrum of Resveratrol (150 MHz, CD₃OD).

Figure S30. ¹³C NMR spectrum of Vitisin E (150 MHz, CD₃COCD₃).

Elemental Composition Calculator

Target m/z:	725.2036	Result type:	Negative ions	Species:	[M+COOH] ⁻
Elements: C (0-80); H		С (0-80); Н (0-120); О (0-30); N(0-5)		
Ion Formula		Calculated m/z		PPM Error	
C43H33O11		725.2028		-1.04	

Figure S31. HRESIN	S spectrum of	f Vitisin E.
--------------------	---------------	--------------

Figure S33. ¹³C NMR spectrum of Luteolin (125 MHz, CD₃OD).

Elemental Composition Calculator

Target m/z:	285.0414	Result type:	Negative ions	Species:	[M-H] ⁻
Elements:		C (0-80); H (0-120); O (0-30); N(0-5)			
Ion Formula		Calculated m/z		PPM Error	
C15H	906	285.0405		-3.39	

Figure S34. HRESIMS spectrum of Luteolin.

Figure S36. ¹³C NMR spectrum of Ampelopsin E (150 MHz, CD₃COCD₃).

Elemental Composition Calculator

Target m/z:	679.1965	Result type:	Negative ions	Species:	[M-H] ⁻
Elements:		C (0-80); H (0-120); O (0-30); N(0-5)			
Ion Formula		Calculated m/z		PPM Error	
C43H3	3109	679.1974		1.19	

Figure S37. HRESIMS spectrum of Ampelopsin E.

Figure S38. ¹H NMR spectrum of Paeoniflorin (600 MHz, CD₃OD).

Figure S39. ¹³C NMR spectrum of Paeoniflorin (150 MHz, CD₃OD).

Elemental Composition Calculator

Target m/z:	525.1611	Result type:	Negative ions	Species:	[M+COOH]
Elements:		C (0-80); H (0-120); O (0-30)			
Ion Formula		Calculated m/z		PPM Error	
C24H29O13			525.1614	0.43	

Figure S40. HRESIMS spectrum of Paeoniflorin.

Reference

- C. W. Choi, Y. H. Choi, M. R. Cha, J. H. Park, Y. S. Kim, Y. K. Kim, S. U. Choi, et al, α-Glucosidase inhibitiors from seed extract of *Paeonia lactiflora*, *Appl. Biol. Chem.*, 2009, 52, 638-642.
- 2 L. Q. Wang, Y. X. Zhao, J. M. Hu, A. Q. Jia, J. Zhou, Stilbene derivatives from *Gnetum montanum Markey*. *f. megalocarpum Markey*, *Helv. Chim. Acta*, 2008, **39**, 159-164.
- 3 Y. L. Li, J. Li, N. L. Wang, X. S. Yao, Flavonoids and a New Polyacetylene from Bidens parviflora

Willd, Molecules, 2008, 13, 1931-1941.

- 4 O. Yoshiteru, S. Kazuhito, T. Yoshiaki, et al, Vitisins D and E, novel oligostilbenes from vitis coignetilae Stem Barks, *Heterocycles*, 1997, **46**, 169-172.
- 5 Y. Oshima, Y. Ueno, Ampelopsins D, E, H and cis-ampelopsin E, oligostilbenes from *Ampelopsis* brevipedunculata var. Hancei roots, *Phytochemistry*, 1993, **33**, 179-182.
- 6 A. Braca, K. P. Van, P. H. Yen, N. X. Nhiem, et al, New monoterpene glycosides from *Paeonia lactiflora*, *Fitoterapia*, 2008, **79**, 117-120.