Supplementary Information

Rhynchophylline alleviates neuroinflammation and regulates metabolic disorders in a mouse model of Parkinson's disease

Chunxia Zhang, ^{a,b†} Zhen Xue, ^{a,b†} Lingmeng Zhu, ^{a,b} Lingfei Han, ^{a,b} Jiayu Zhou, ^{a,b} Lingxin Zhuo, ^{a,b} Jiayi Zhang, ^{a,b} Xinchen Zhang, ^{a,b} Wenyuan Liu, ^{*a,c} Wenting Liao ^{*a,b}

- ^a Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
- ^b Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
- ^c Zhejiang Center for safety study of drug substances (Industrial Technology Innovation Platform), Hangzhou, 310018, China

[†]Chunxia Zhang and Zhen Xue made equal contributions to the research.

*Corresponding authors: Wenting Liao, Email: lwting84@163.com, Tel: +86-25-83271038. Wenyuan Liu, Email: liuwenyuan8506@163.com, Tel: +86-25-83271038.

Supplementary Figures

Fig. S1. The chemical structure of RIN (A) and the flow chart of animal experiments (B).

Fig. S2. Base peak ion (BPI) chromatograms of RIN as analyzed by UHPLC-QTOFMS. (A) BPI of UHPLC-QTOFMS in positive ion mode. (B) BPI of UHPLC-QTOFMS in negative ion mode.

Fig. S3. Quality control of LC-MS methodologies. (A) PCA score plot of real samples and QCsamples from positive ion mode LC-MS dataset. (B) PCA score plot of real samples and QC samplesfromnegativeionmodeLC-MSdataset.

Fig. S4. The OPLS-DA scores plot from positive ion mode LC-MS (A) and negative ion mode LC-MS (B) dataset of control and MPTP groups. The quality was validated by 200 permutation tests (C) for positive ion mode LC-MS and (D) for negative ion mode LC-MS, respectively.

Fig. S5. Relative intensity of metabolites regulated by RIN. (Values are shown in Mean \pm SEM. *p<0.05, **p<0.01 vs MPTP group.)

Supplemental Tables

Gene	Primer	Sequence
NLRP3	forward	ATTACCCGCCCGAGAAAGG
	reverse	TCGCAGCAAAGATCCACACAG
TLR4	forward	ATGGCATGGCTTACACCACC
	reverse	GAGGCCAATTTTGTCTCCACA
COX2	forward	TGCACTATGGTTACAAAAGCTGG
	reverse	TCAGGAAGCTCCTTATTTCCCTT
β-actin	forward	GGCTGTATTCCCCTCCATCG
	reverse	CCAGTTGGTAACAATGCCATGT

 Table S1. Sequences of primers used for quantitative real-time PCR.

Table S2. Influence of RIN on neurobehavioral abnormalities in MPTP-treated mice.

	Control	MPTP	Madopar	RIN (2 mg/kg)	RIN (5 mg/kg)	RIN (10 mg/kg)
Total time (s)	8.06±0.64	18.02±2.07###	9.54±0.83***	9.87±0.59***#	9.29±0.92***	8.32±1.84***
Residence time (s)	220.3±21.91	95.78±19.76###	165.22±20.36*#	$170.56{\pm}27.8^*$	169.56±22.48*	$177.88{\pm}29.76^*$
Total distance (mm)	$14586.35 {\pm} 906.04$	5385.08±1041.89 ^{###}	9623.89±1509.63*##	10237.1±1177.21**##	$10543.42 \pm 682.83^{***\#\#}$	$10085.68 {\pm} 1057.56^{**{\#}}$
Central distance (mm)	1660.41±223.94	612.3±189.00 ^{##}	1074.72±165.64 [#]	1272.15±275.46*	1267.18±130.9**	1314.89±233.44*

Data are mean \pm SEM. p < 0.05, p < 0.01, p < 0.01, p < 0.01 vs. control group; p < 0.05, p < 0.01, p < 0.01, p < 0.01 vs. MPTP group.

Table S3. Representative photomicrographs of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra and TH-positive fibers in the striatum.

	Control	MPTP	Madopar	RIN (2 mg/kg)	RIN (5 mg/kg)	RIN (10 mg/kg)
Substantia nigra	56.16±3.63	36.81±2.13 [#]	43.54±1.12*#	41.46±1.08 [#]	$44.82{\pm}0.88^{*\#}$	47.12±2.78*
Striatum	47.07±1.82	27.66±1.12###	36.5±3.78	36.06±4.12	37.50±4.95	37.32±3.04*

Data are mean \pm SEM. p < 0.05, p < 0.001 vs. control group; p < 0.05 vs. MPTP group.

Table S4. The serum levels of inflammatory cytokines (IL-1 β , IL-6, IL-10 and TNF- α) and oxidative stress indicators (SOD,	
GSH, LDH and MDA).	

,	,					
	Control	MPTP	Madopar	RIN (2 mg/kg)	RIN (5 mg/kg)	RIN (10 mg/kg)
IL-1 β (pg/mL)	46.78±4.94	70.21±4.15##	55.53±2.07**	74.9±6.11##	54.37±4.72*	50.06±5.16**
IL-6 (pg/mL)	55.8±4.07	80.77±4.06###	61.99±4.15**	82.87±2.33###	66.39±4.68*	58.42±3.68***
IL-10 (pg/mL)	276.04±8.62	204.08±13.07###	258.76±12.52**	204.7±17.67##	217.91±13##	$247.92{\pm}10.89^*$
TNF-α (pg/mL)	280.12±22.75	403.57±19.1###	284.18±19.41***	408.93±20.91###	$343.19{\pm}20.1^*$	291.5±18.65***
SOD (ng/mL)	8.99 ± 0.28	6.3±0.45 ^{###}	$7.76{\pm}0.47^{*\#}$	6.05±0.46###	7.02±0.41##	8.84±0.34***
GSH (ng/mL)	5.3±0.25	3.19±0.19###	$4.52 \pm 0.26^{***}$	3.81±0.25*##	3.65±0.18###	4.6±0.46**
LDH (ng/mL)	9.02 ± 0.66	13.48±0.53###	9.38±0.63***	13.04±0.86##	10.57±0.46***	$9.93{\pm}0.49^{***}$
MDA (nmol/L)	11.19±0.94	17.47±0.94###	11.31±0.47***	16.02±0.99##	13.46±0.95**	12.57±0.94**

Data are mean \pm SEM. p < 0.05, p < 0.01, p < 0.01, p < 0.001 vs. control group; p < 0.05, p < 0.01, p < 0.001 vs. MPTP group.

	Total ^a	Hits ^b	Raw p ^c	-LOG ₁₀ (p)	FDR	Impact
Synthesis and degradation of ketone bodies	5	2	3.01E-03	2.52	4.82E-03	0.60
Retinol metabolism	16	2	1.71E-02	1.77	1.95E-02	0.41
Glycine, serine and threonine metabolism	34	1	5.57E-04	3.25	1.48E-03	0.27
Glyoxylate and dicarboxylate metabolism	32	3	2.01E-03	2.70	4.05E-03	0.16
Glycerophospholipid metabolism	36	3	9.34E-06	5.03	5.99E-05	0.16
Citrate cycle (TCA cycle)	20	2	2.03E-03	2.69	4.05E-03	0.14
Butanoate metabolism	15	2	3.01E-03	2.52	4.82E-03	0.11
Glutathione metabolism	28	1	5.57E-04	3.25	1.48E-03	0.09
Phosphatidylinositol signaling system	28	1	7.76E-03	2.11	9.80E-03	0.03
Inositol phosphate metabolism	30	1	7.76E-03	2.11	9.80E-03	0.03
Primary bile acid biosynthesis	46	1	5.57E-04	3.25	1.48E-03	0.02
Arachidonic acid metabolism	36	5	4.19E-06	5.38	5.99E-05	0.02
Purine metabolism	66	1	2.15E-02	1.67	2.24E-02	0.02
Tyrosine metabolism	42	2	1.29E-03	2.89	3.11E-03	0.01

Table S5. Analyzed pathways of metabolomics data differently regulated in serum of MPTP-induced PD mice.

^{*a*} Total is the total number of compounds in the pathway; ^{*b*} the hits is the actually matched number from the user uploaded data; ^{*c*} the p is the original p value calculated from the enrichment analysis; ^{*d*} the impact is the pathway impact value calculated from pathway topology analysis.

	Total ^a	Hits ^b	Raw p ^c	-LOG ₁₀ (p)	FDR	Impact
Retinol metabolism	16	2	0.00	4.50	0.00	0.41
Glycerophospholipid metabolism	36	2	0.01	2.01	0.02	0.11
Citrate cycle (TCA cycle)	20	1	0.06	1.20	0.06	0.05
Glyoxylate and dicarboxylate metabolism	32	1	0.06	1.20	0.06	0.02
Arachidonic acid metabolism	36	5	0.00	2.99	0.00	0.02
Purine metabolism	66	1	0.00	3.25	0.00	0.02

Table S6. Analyzed pathways of metabolomics data differently regulated in serum of RIN-treated mice compared with model mice.

^{*a*} Total is the total number of compounds in the pathway; ^{*b*} the hits is the actually matched number from the user uploaded data; ^{*c*} the p is the original p value calculated from the enrichment analysis; ^{*d*} the impact is the pathway impact value calculated from pathway topology analysis.