Supplementary materials

The supplementary file containing Supplementary eTables 1-10, Supplementary eMethods 1-7, Supplementary eFigures 1-8, and Reference are provided.

Supplementary eTables:

eTable 1. Supporting information of 30 common edible flowers.

eTable 2. List of the C.elegans strains used in this study.

eTable 3. List of the primers used in this study for qPCR analysis.

eTable 4. Summary of the wild-type *C.elegans* lifespan experiments treated with ethanolic extracts of 30 edible flowers.

eTable 5. In vitro antioxidant properties of 30 common edible floral extracts.

eTable 6. Correlations between edible flowers' antioxidant potency composite index (APCI) and effects on nematode mean and median lifespan.

eTable 7. Summary of the C.elegans lifespan experiments treated with EUFE or active components.

eTable 8. Determination of total phenolic, flavonoid, and terpenoid contents in 12 edible flowers with lifespan-promoting effects.

eTable 9. Correlations among 12 edible flowers' total phenolic, flavonoid, and terpenoid contents and effects on nematode mean lifespan.

eTable 10. Chemical constituents qualitatively identified from EUFE by UHPLC-QE-MS.

Supplementary eMethods:

eMethod 1. The specific preparation process of floral ethanolic extracts and EUFE.

eMethod 2. The specific process of synchronization and administration in C.elegans.

eMethod 3. The detailed calculation of the antioxidant potency composite index (APCI).

eMethod 4. The detailed procedures of diet preference assay.

eMethod 5. The detailed procedures of microscopic fluorescence imaging.

eMethod 6. The detailed procedures of transmission electron microscopy.

eMethod 7. The specific procedures of qualitative and quantitative analysis of EUFE.

Supplementary eFigures:

eFigure 1. The scheme and results of diet preference assay in C.elegans.

eFigure 2. Effects of ethanolic extracts of 18 edible flowers on C.elegans lifespan.

eFigure 3. The survival rate of wild-type nematodes cultured on NGM plates containing 0.5, 1, 5, or

10 mg/mL EUFE or vehicle in 1 d and 7 d.

eFigure 4. The body size (for 1 day) of nematodes treated with EUFE and vehicle.

eFigure 5. The reproductive ability of nematodes treated with EUFE and vehicle.

eFigure 6. Representative images of muscle morphology at days 1 of adulthood of pmyo-3MYO-3::GFP nematodes treated with EUFE or vehicle.

eFigure 7. Representative images of muscle morphology at days 5 of adulthood of pmyo-3MYO-3::GFP nematodes treated with EUFE or vehicle.

eFigure 8. Relative mRNA expression of *daf-16* gene in worms after treatment of vehicle or five identified compounds for 1 d.

Reference

Number	Scientific name	Common name	Botanical family	Coloration	Edible part
1	Hibiscus sabdariffa L.	Roselle	Malvacea e	Red	Calyces
2	Eucommia ulmoides Oliver.	Male flower of Eucommia ulmoides	Eucommi aceae	Green	Male flower
3	Carthamus tinctorius L.	Safflower	Asteracea e	Orange red	Tubular flower
4	Erigeron breviscapus (Vant.) Hand. -Mazz.	Fleabane flower	Asteracea e	Blue or pinkish purple	Flower
5	Citrus aurantium L.	Bitter/sour orange 6flower	Rutaceae	White White Source: by Sebastiao Pereira-	Petal or flower bud
6	<i>Dendrobium candidum</i> Kimura et Migo.	Flower of Dendrobiu m officinale	Orchidace ae	Yellow Source: by Naoki Takebayashi	Flower

eTable 1. Supporting information of 30 common edible flowers.

Number	Scientific name	Common name	Botanical family	Coloration	Edible part
7	Lonicera japonica Thunb.	Japanese honeysuckl e, Golden and silver honeysuckl e, Jin Yin Hua	Caprifolia ceae	White, yellow-green	Flower or flower bud
8	Tagetes erecta L.	African marigold, Aztec marigold	Asteracea e	Bright yellow, brownish yellow, orange to brown	Corolla or flower
9	Nelumbo nucifera Gaertn.	Sacred water lotus	Nelumbon aceae	Red, pink or white	Petal or flower bud
10	<i>Eriobotrya japonica</i> (Thunb.) Lindl.	Loquat flower	Rosaceae	Source: by Ebron Yellowish white Source: by sante boschian pest	Flower
11	<i>Trollius chinensis</i> Bunge.	Nasturtium, Chinese globeflower	Ranuncul aceae	Yellow, orange, red	Flower
12	Nymphaea tetragona Georgi.	Water lily, pygmy Waterlily	Nymphae aceae	Red, pink, yellow, purple or white	Petal or flower bud

Number	Scientific name	Common name	Botanical family	tanical Coloration nily	
13	<i>Rosa rugosa</i> Thunb.	Rugosa rose	Rosaceae	White, purple, red, or pink	Petal or flower bud
14	<i>Hemerocallis citrina</i> Baroni.	Daylily	Liliaceae	Source: by Andreas Rockstein Large yellow, red or orange Example 2 Source: by hmxxyy	Flower bud
15	Dolichos Iablab L.	Flower of Dolichos Iablab	Legumino sae	Yellowish white or yellowish brown	Petal
16	Prunus × yedoensis Matsum.	Cherry blossom	Rosaceae	Source: by Dinesh Valke White, pink	Petal
17	Prunus persica	Peach blossom	Rosaceae	White, pink, red	Flower
18	Matricaria recutita	Chamomile	Asteracea e	White and yellow White and yellow Source: by Mauricio Mercadante	Flower

Number	Scientific name	Common name	Botanical family	Coloration	Edible part
19	Sophora japonica L.	Flos Sophorae Immaturus, Huai mi	Fabaceae	Yellow-white	Flower or flower bud
20	Rosa chinensis Jacq.	Chinese rose, monthly rose, rosa chinensis	Rosaceae	Red or pink	Petal or flower bud
21	Chrysanthem um morifolium Ramat.	Florist's daisy, Hardy garden mum	Asteracea e	Yellow-white	Corolla or flower
22	Osmanthus fragrans Lour.	Sweet- scented osmanthus, Sweet olive	Oleaceae	White, pale yellow, yellow or orange-yellow	Four- lobed corolla
23	<i>Michelia alba</i> DC.	White champaca	Magnoliac eae	White Source: by yvone042488	Petal
24	<i>Lilium brownii var.</i> viridulum Baker	Lily	Liliaceae	White, yellow, pink or red	Petal

Number	Scientific name	Common name	Botanical Coloration family		Edible part
				Yellow or orange	
25	Calendula officinalis L.	Pot marigold	Asteracea e		Corolla or flower
				Source: by Anna Muratore	
				Light blue, red purple or white	
26	Crocus sativus L.	Saffron, Fan Hong Hua	Iridaceae		Stigmata of flower
				Source: by Jindrich Shejbal	
27	<i>Armeniaca mume Sieb. var.</i> mume f. viridicalyx (Makino) T.	Flosmume	Rosaceae	White	Fower bud
	Y. Chen			Source: by Crystal LIU	
				Rose, mauve, pink or white	
28	Paeonia suffruticosa Andr.	Tree peony	Ranuncul aceae		Petal
				Source: by kesha poole	
				White	
29	Jasminum sambac (L.) Aiton	Jasmine	Oleaceae		Petal or flower bud
				Source: by Anna Muratore	
				White	
30	<i>Camellia sinensis</i> (Linn.) O. Kuntze	Tea blossom, tea flower	Theaceae		Petal or flower bud
				Source: by Jindrich Shejbal	

All images of flowers are sourced from www.flickr.com

Strain name	Genotype
N2	Wild-type Bristol
IR1511	N2;Ex001[p _{myo-3} DsRed::LGG-1;p _{dct-1} DCT-1::GFP]
CF1553	muls84 [(pAD76) <i>sod-3p</i> ::GFP + <i>rol-6</i> (su1006)]
DA2123	adls2122 [<i>lgg-1p</i> ::GFP:: <i>lgg-1</i> + <i>rol-6</i> (su1006)]
TJ356	zls356 [<i>daf-16p::daf-16a/b:</i> :GFP + <i>rol-6</i> (su1006)]
RW1596	stEx30 [<i>myo-3p</i> ::GFP:: <i>myo-3</i> + <i>rol-6</i> (su1006)]
SJ4103	zcls14 [<i>myo-3</i> ::GFP(mit)]
CF1038	daf-16(mu86) I.
DA465	eat-2(ad465) II.
TJ1052	age-1(hx546) II.
TK22	<i>mev-1(kn1)</i> III.
MQ130	<i>clk-1(qm30)</i> III.
GR2245	skn-1(mg570) IV.

eTable 2. List of the *C.elegans* strains used in this study.

The information presented in this table is provided from Caenorhabditis Genetics Center.

Cono nomo	Primer sequences							
Gene name	Forward	Reverse						
act-1	CTACGAACTTCCTGACGGACAAG	CCGGCGGACTCCATACC						
daf-16	GAGGAGCACAGCTTCCAGAAT	ATTGAGCTCCGCCTCCAATG						
sir-2.1	CGATGCACCCGAAACAAACA	TTCTGCCTTACAGGAGCACG						
sod-3	GCAATCTACTGCTCGCACTG	TTCGAAACAGCCTCGTGAAGT						
skn-1	TCAACCGTCCAATGGGTCTC	GTGCCCTTCTCTCCAGCAAT						
hsp-16.2	GGAACGCCAATTTGCTCCAG	AGATTCGAAGCAACTGCACC						
drp-1	AGCCCACCAATGAGCTTGTC	GAGCACTGACCGCTCTTTCT						
eat-3	TGATGCGTTTAGAGCAGCCA	TGAAGAAGCATACGCAGGCA						
lgg-1	CGTGCCGAAGGAGACAAGAT	CTTCCTCGTGATGGTCCTGG						
dct-1	TGGTATGTCAGAATCGTGGGTG	ACGGACAGTCTTTGGAGGTG						
hsp-6	ACAGGCCGTTACCAACTCTG	TGTTGACGGTGGTTCCCAAA						
nhr-65	TGGACGAAATGCTTGGCTTG	ACGTTGAAAAGCTCCGCGAT						
mev-1	CGCAGTTTTGCCGTTCGATT	AGAAGGCGGAGCATCTGTG						

eTable 3. List of the primers used in this study for qPCR analysis.

Treatment (vehicle ^a and flower species ^b)	Mean lifespan ± SEM (days)	Percentage change (%)	Median lifespan (days)	Percentage change (%)	No. death/ censored (no. trial)	<i>P</i> -value against vehicle
Vehicle control	15.80 ± 0.28	/	16.00	/	354/36 (3)	/
1 H. sabdariffa flower	17.80 ± 0.19	12.66	18.50	15.63	384/36 (3)	< 0.0001
2 E. ulmoides male flower	17.79 ± 0.31	12.59	19.00	15.79	372/48 (3)	< 0.0001
3 C. tinctorius flower	17.73 ± 0.25	12.22	18.00	12.50	360/60 (3)	< 0.0001
4 E. breviscapus flower	17.45 ± 0.19	10.44	18.00	12.50	306/84 (3)	0.0012
5 C. aurantium flower	17.21 ± 0.21	8.92	18.00	12.50	342/78 (3)	0.0001
6 D. candidum flower	17.10 ± 0.27	7.10	18.00	12.50	354/66 (3)	0.0016
7 <i>L. japonica</i> flower	17.23 ± 0.45	9.05	17.00	6.25	336/84 (3)	0.0044
8 <i>T. erecta</i> flower	17.15 ± 0.22	8.54	17.00	6.25	408/72(3)	0.0043
9 <i>N. nucifera</i> flower	16.79 ± 0.21	6.27	17.00	6.25	234/186 (3)	0.0073
10 <i>E. japonica</i> flower	16.70 ± 0.43	5.70	18.00	12.50	444/36 (3)	0.0012
11 T. chinensis flower	16.52 ± 0.22	4.56	17.00	6.25	324/96 (3)	0.0159
12 N. tetragona flower	16.48 ± 0.18	4.30	17.00	6.25	378/42 (3)	0.0474
13 <i>R. rugosa</i> flower	16.25 ± 0.28	2.85	17.00	6.25	360/60 (3)	0.1038
14 H. citrina flower	16.00 ± 0.21	1.27	17.00	6.25	300/120 (3)	0.0695
15 <i>D. lablab</i> flower	15.83 ± 0.39	0.19	17.00	6.25	426/54 (3)	0.6673
16 P.× yedoensis flower	16.91 ± 0.67	7.03	16.00	0.00	330/90 (3)	0.0120
17 P. persica flower	16.07 ± 0.47	1.71	16.00	0.00	276/144 (3)	0.3792
18 M. recutita flower	15.93 ± 0.28	0.82	16.00	0.00	348/72 (3)	0.0828
19 S. japonica flower	15.58 ± 0.58	-1.39	16.00	0.00	438/42 (3)	0.1812
20 R. chinensis flower	15.43 ± 0.64	-2.34	16.00	0.00	282/138 (3)	0.7868
21 C.morifolium flower	15.86 ± 0.59	0.38	15.50	-3.13	444/396 (3)	0.1932
22 O. fragrans flower	15.38 ± 0.31	-2.66	15.50	-3.13	300/120 (3)	0.9081
23 <i>M. alba</i> flower	15.29 ± 0.25	-3.23	15.00	-6.25	390/30 (3)	0.5237
24 L. brownii flower	15.26 ± 0.27	-3.42	15.00	-6.25	432/48 (3)	0.9928
25 C. officinalis flower	15.21 ± 0.22	-3.73	15.00	-6.25	342/78 (3)	0.4798
26 C. sativus flower	14.66 ± 0.19	-7.22	15.00	-6.25	264/156 (3)	0.1388
27 A. mume flower	15.02 ± 0.36	-4.94	15.00	-6.25	438/42 (3)	0.1037
28 P. suffruticosa flower	13.96 ± 0.16	-11.65	14.00	-12.50	276/144 (3)	0.2153
29 J. sambac flower	14.77 ± 0.28	-6.52	15.00	-6.25	342/78 (3)	0.0191
30 C. sinensis flower	14.20 ± 0.22	-10.13	14.00	-12.50	420/60 (3)	0.0178

eTable 4. Summary of the wild-type *C.elegans* lifespan experiments treated with ethanolic extracts of 30 edible flowers.

^a The vehicle control used is based on a sham ethanol extraction. ^b Flowers are numbered according to **eTable 1.** The concentration of each floral extract is 50 mg/mL according to **eMethod 1**. N2 means *C. elegans* Bristol N2 strain wild-type nematodes. *P* values represent comparison with vehicle calculated using log-rank (Mantel-Cox) test by

eTable	5.	In	vitro	antioxidant	properties	of	30	common	edible	floral
extracts	S.									

	Antioxidant ass			
Flower species ^a	DPPH (µmol	ABTS (µmol	FRAP (µmol Fe ²⁺ /	APCI°
	Vc/g dw)	Vc/g dw)	g dw)	
1 <i>H. sabdariffa</i> flower	39.51 ± 2.25	114.59 ± 1.86	419.98 ± 7.39	7.09±0.18
2 E. ulmoides male flower	77.75 ± 11.77	362.85 ± 7.78	1,072.00 ± 40.71	18.84±0.92
3 C. tinctorius flower	100.09 ± 6.58	382.14 ± 20.09	1,065.01 ± 11.63	20.10±0.80
4 E. breviscapus flower	163.28 ± 5.12	529.67 ± 11.89	1,559.02 ± 66.97	29.39±0.94
5 C. aurantium flower	66.12 ± 3.46	806.57 ± 12.57	768.06 ± 27.08	26.53±0.61
6 D. candidum flower	14.36 ± 0.77	84.26 ± 2.45	156.65 ± 3.75	3.59±0.11
7 <i>L. japonica</i> flower	91.55 ± 4.98	206.90 ± 1.04	827.49 ± 10.66	14.07±0.29
8 T. erecta flower	377.02 ± 7.67	818.68 ± 7.90	3,108.23 ± 36.77	55.11±0.74
9 <i>N. nucifera</i> flower	360.16 ± 13.22	814.06 ± 9.32	2,190.62 ± 50.71	47.99±1.08
10 <i>E. japonica</i> flower	25.18 ± 2.02	68.10 ± 0.85	199.10 ± 4.63	3.93±0.13
11 T. chinensis flower	206.89 ± 7.48	532.48 ± 6.67	1,453.16 ± 23.03	30.41±0.60
12 N. tetragona flower	484.20 ± 13.17	1,056.35 ± 39.44	3,649.24 ± 76.88	68.52±1.96
13 <i>R. rugosa</i> flower	317.12 ± 8.44	559.39 ± 39.88	2,358.81 ± 69.03	41.60±1.73
14 H. citrina flower	8.03 ± 1.00	53.84 ± 1.47	131.69 ± 4.23	2.47±0.10
15 <i>D. lablab</i> flower	10.85 ± 1.10	66.44 ± 1.28	125.75 ± 3.17	2.83±0.09
16 P.× yedoensis flower	113.39 ± 0.86	309.18 ± 4.87	955.30 ± 25.84	18.17±0.33
17 P. persica flower	24.97 ± 0.97	105.82 ± 0.47	254.15 ± 6.90	5.18±0.10
18 <i>M. recutita</i> flower	126.14 ± 9.65	419.05 ± 18.33	1,693.53 ± 31.08	26.32±1.01
19 S. japonica flower	22.02 ± 2.45	134.57 ± 2.66	245.34 ± 7.23	5.67±0.21
20 R. chinensis flower	278.46 ± 8.05	569.03 ± 14.17	1,947.33 ± 46.88	37.47±0.97
21 C.morifolium flower	79.19 ± 10.63	200.61 ± 4.45	751.21 ± 14.13	12.92±0.61
22 O. fragrans flower	192.19 ± 7.65	669.28 ± 9.75	1,767.19 ± 29.77	35.18±0.73
23 <i>M. alba</i> flower	39.11 ± 1.32	121.61 ± 1.79	402.14 ± 6.14	7.12±0.14
24 L. brownii flower	18.20 ± 2.20	57.63 ± 2.00	202.76 ± 13.28	3.44±0.22
25 C. officinalis flower	28.66 ± 6.00	169.93 ± 8.71	512.99 ± 14.78	8.60±0.54
26 C. sativus flower	15.16 ± 0.61	90.86 ± 3.91	285.65 ± 9.99	4.67±0.18
27 A. mume flower	258.67 ± 8.42	755.84 ± 5.27	2,539.31 ± 55.63	45.12±0.83
28 P. suffruticosa flower	836.56 ± 13.20	1,403.44 ± 32.29	4,409.24 ± 262.76	95.49±3.08
29 J. sambac flower	28.49 ± 3.15	129.07 ± 4.56	341.11 ± 10.49	6.45±0.30
30 C. sinensis flower	368.70 ± 8.96	678.79 ± 10.68	2,133.15 ± 52.04	44.80±0.96

^a Flowers are abbreviated and numbered according to **eTable 1**. ^b DPPH, free radical scavenging properties by 2, 2diphenyl-1-picrylhydrazyl radical; ABTS, free radical scavenging activities against ABTS radical cations (2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid); FRAP, ferric reducing antioxidant power; ^c APCI, antioxidant potency composite index.

eTable 6. Correlations between edible flowers' antioxidant potency composite index (APCI) and effects on nematode mean and median lifespan.

		APCI		mean life	span	median li	fespan
APCI		1		1		1	
mean	lifespan	-0.20		1		1	
media	an lifespan	-0.20		0.93***		1	
***	Correlation	is	significant	at	the	0.001	level.

		Maan lifaanan	Doroontogo	Median	No. death/	P-value
Strains	Treatment	+ SEM (days)		lifespan	censored	against
			change (%)	(days)	(no. trial)	control ^a
	Day 0: Control	15.96 ± 0.37	/	16.00	342/48 (3)	/
	EUFE-25 µg/mL	17.12 ± 0.46	7.27	17.00	510/75 (3)	0.0159
	EUFE-50 µg/mL	17.97 ± 0.37	12.59	18.00	528/57 (3)	<0.0001
NO	EUFE-100 µg/mL	18.93 ± 0.24	18.61	19.00	408/177 (3)	<0.0001
INZ	EUFE-200 µg/mL	17.81 ± 0.22	11.59	18.00	510/75(3)	<0.0001
	EUFE-500 µg/mL	16.78 ± 0.69	5.14	17.00	498/87 (3)	0.1154
	Day 5: EUFE-100 μg/mL	18.10 ± 0.21	13.41	18.00	486/54 (3)	<0.0001
	Day 9: EUFE-100 µg/mL	17.36 ± 0.39	8.77	17.00	480/60 (3)	0.0009
<i>daf-16</i> (mu86)	Control	13.64 ± 0.37	/	14.00	522/63 (3)	1
I.	EUFE-100 µg/mL	13.84 ± 0.12	1.48	14.00	504/81(3)	0.5732
	Aucubin-100 μΜ	13.78 ± 0.28	1.07	14.00	540/45 (3)	0.5657
	Geniposide-100 µM	14.07 ± 0.33	3.18	14.00	504/81 (3)	0.2727
	Geniposidic acid-100 µM	15.60 ± 0.37	14.41	16.00	477/108 (3)	0.0003
	Asperuloside-100 µM	13.88 ± 0.21	1.74	14.00	504/81 (3)	0.4773
	Chlorogenic acid-100 µM	13.76 ± 0.43	0.92	14.00	495/90 (3)	0.7000
<i>mev-1</i> (kn1)	Control	11.57 ± 0.49	/	11.00	522/63 (3)	1
III.	EUFE-100 µg/mL	11.89 ± 0.46	2.77	11.00	486/99 (3)	0.5620
	Aucubin-100 μΜ	11.87 ± 0.28	2.61	11.50	486/99 (3)	0.5252
	Geniposide-100 µM	11.85 ± 0.24	2.43	12.00	540/45 (3)	0.4385
	Geniposidic acid-100 µM	13.44 ± 0.53	16.18	13.00	531/54 (3)	0.0018
	Asperuloside-100 µM	11.95 ± 0.36	3.27	12.00	513/72 (3)	0.6268
	Chlorogenic acid-100 µM	12.79 ± 0.44	10.53	13.00	423/112 (3)	0.0331
<i>eat-2</i> (ad465)	Control	20.75 ± 0.52	1	19.00	204/36 (2)	1
II.	EUFE-100 µg/mL	23.57 ± 0.64	13.64	22.50	216/24 (2)	0.0091
skn-	Control	12.56 ± 0.52	/	13.00	200/40 (2)	1
1(mg570) IV.	EUFE-100 µg/mL	14.44 ± 0.34	14.99	15.00	208/32 (2)	0.0010
<i>age-1</i> (hx546)	Control	19.20 ± 0.85	1	19.00	220/20 (2)	1
II.	EUFE-100 mg/mL	21.74 ± 0.86	13.23	21.50	200/40 (2)	0.0008
<i>clk-1</i> (qm30)	Control	19.29 ± 0.53	1	19.00	220/20 (2)	1
III.	EUFE-100 mg/mL	21.47 ± 0.28	11.27	22.50	232/8 (2)	0.0016
	Control	15.65 ± 0.52	/	16.00	486/54 (3)	1
	Aucubin-100 µM	17.91 ± 0.45	14.44	18.00	486/54 (3)	<0.0001
NO	Geniposide-100 µM	17.31 ± 0.25	10.62	17.00	522/18 (3)	0.0005
N2	Geniposidic acid-100 µM	18.30 ± 0.31	16.97	19.00	504/36 (3)	<0.0001
	Asperuloside-100 µM	18.69 ± 0.47	19.44	19.00	495/45 (3)	<0.0001
	Chlorogenic acid-100 µM	16.77 ± 0.20	7.19	17.00	477/63 (3)	0.0177

eTable 7. Summary of the *C.elegans* lifespan experiments treated with EUFE or active components.

^a The vehicle control used is sterile water. N2 means C. elegans Bristol N2 strain wild-type nematodes. P values

represent comparison with vehicle calculated using log-rank (Mantel-Cox) test by GraphPad Prism.

	total phenolic	total flavonoid	total terpenoid	
Flower energies	(mg chlorogenic	(mg rutin	(mg linalool	
Flower species"	acid equivalent	equivalent (RE) /g	equivalent (LE) /g	
	(CAE) /g DW)	DW)	DW)	
1 H. sabdariffa flower	10.16 ± 0.68	2.83 ± 0.12	4.52± 0.14	
2 E. ulmoides male flower	19.91 ± 0.99	8.60 ± 0.19	16.43 ± 0.17	
3 C. tinctorius flower	23.94 ± 1.54	4.12 ± 0.18	20.36 ± 0.42	
4 E. breviscapus flower	24.55 ± 0.66	15.42 ± 0.16	16.87 ± 0.18	
5 C. aurantium flower	26.50 ± 0.72	4.00 ± 0.10	12.87 ± 0.11	
6 D. candidum flower	7.80 ± 0.33	3.89 ± 0.13	12.35 ± 0.17	
7 <i>L. japonica</i> flower	26.59 ± 0.46	32.18 ± 0.11	10.24 ± 0.13	
8 T. erecta flower	35.37 ± 0.51	10.91 ± 0.16	6.85 ± 0.40	
9 N. nucifera flower	37.68 ± 0.61	15.00 ± 0.15	10.69 ± 0.11	
10 <i>E. japonica</i> flower	7.38 ± 0.22	6.72 ± 0.11	4.89 ± 0.13	
11 T. chinensis flower	25.28 ± 0.49	19.35 ± 0.16	4.50 ± 0.09	
12 N. tetragona flower	74.26 ± 1.53	12.81 ± 0.15	2.91 ± 0.18	

eTable 8. Determination of total phenolic, flavonoid, and terpenoid contents in 12 edible flowers with lifespan-promoting effects.

^a Flowers are abbreviated and numbered according to **eTable 1**. Values are expressed as mg of equivalent per gram

of

dry

flower.

eTable 9. Correlations between 12 edible flowers' total phenolic, flavonoid, and terpenoid contents and effects on nematode mean lifespan.

	mean lifespan	total phenolic	total flavonoid	total terpenoid
mean lifespan	1	/	1	1
total phenolic	-0.46	1	1	1
total flavonoid	-0.32	0.30	1	1
total terpenoid	0.64*	-0.26	-0.15	1

*Correlation is significant at the 0.05 level.

No.	t _R	Chemical	lon	Theoretica	Real Mass	Mass	MS ^E fragmentation (m/z)	Relative	Possible	Sources and	
	(min)	formula	mode	I Mass (Da)	(Da)	Errors		abundan	compounds	references	
						(mmu)		се		Tererences	
1	1.06		FN A LUI-	240 1504	240 1504		349.1395/187.0915/161.0396/89	2.17E8	Fucemmicside	m	
	1.20	U ₁₅ Π ₂₆ U ₉	[ויו-רו	349.1504	549.1504	0	.0255/71.0138/59.0132		Eucommoside		
2	1 56		FN A LUI-	280 1080	280 1005	0.6	389.0971/227.0477/209.0375/18	5.31E8	Deacetylasperul	m=Cloud (1)	
2	1.50	$C_{16}\Pi_{22}O_{11}$	[ועו-נייו]	309.1009	369.1095	0.0	3.0587/165.0486/147.0384		osidic acid	mzcioud, (1)	
2	1 50		FN 4 1 13-	405 1400	405 1406	0.4	405.1413/315.1096/243.0900/22	3.91E8	8-O-		
3	1.56	$C_{17}\Pi_{26}O_{11}$	[[VI-H]]	405.1402	405.1406	0.4	5.0798/144.0237		Acetylharpagide	mzCloud, (1)	
4	1.60		FN 4 1 13-	245 1101	245 1190	0.0	299.0677/183.0588/165.0486/13	3.48E8	Augustia		
4	1.02	$C_{15}H_{22}O_{9}$	[[VI-H]]	345.1191	345.1189	-0.2	7.0180		Aucubin	mzCloud, (1)	
	1.07		FN 4 1 13-	272 1110	070 4444	0.4	373.1023/211.0530/123.0390/71	1.80E9			
E	1.97		[ועו-נייו]	373.1140	373.1144	0.4	.0138		Conincoidio coid	m=Cloud (1)	
5	1.00	$C_{16}\Pi_{22}O_{10}$	۲N / ۱ LJ]+	275 1096	275 1079	0.0	195.0652/177.0545/149.0597/12	1.44E9	Geniposidic acid	mzcioud, (1)	
	1.99			375.1200	375.1270	-0.0	1.0650/93.0704	.0650/93.0704			
6	1.98	$C_{11}H_{14}O_5$	[M-H] ⁻	225.0768	225.0762	-0.6	225.0802/181.0909/82.0306	2.18E9	Genipin	mzCloud, (2)	
7	2.26	C H O	FN A LUI-	445 1251	445 1256	0.5	445.1219/401.1328/302.1703/16	2.14E8	Coulthorin	m=Cloud (1)	
'	2.30			[ועו-נייו]	445.1551	445.1550	0.5	1.0396		Gauttienn	mzcioud, (1)
0	2.54		FN A LUI-	421 1105	424 4407	0.2	431.1061/269.0579/251.0474/22	2.28E8	Asperulosidic	m=Cloud (1)	
0	2.54	U ₁₈ Π ₂₄ U ₁₂	[ויו-ריו	431.1195	431.1197	0.2	5.0686/59.0132		acid		
0	2.68		[M-H] ⁻	353.0878	353.0876	-0.2	353.0768/191.0486	2.12E8	Chlorogenic	m=Cloud (1)	
9	2.71	U ₁₆ Π ₁₈ U ₉	[M+H]⁺	355.1024	355.1020	-0.4	163.0389/135.0441/89.0391	5.04E8	acid	mzcioud, (1)	
	3.01		[M-H] ⁻	413.1089	413.1089	0	413.0974/191.0274/147.0386	1.61E9			
10	2.02	$C_{18}H_{22}O_{11}$	[N/1+LJ]+	115 1005	115 1210	1.6	253.0707/193.0497/175.0391/14	5.52E8	Asperuloside	mzCloud, (1)	
	3.03			410.1200	413.1219	-1.0	7.0441/119.0494/91.0548				

eTable 10. Chemical constituents qualitatively identified from EUFE by UHPLC-QE-MS.

No.	t _R	Chemical	lon	Theoretica	Real Mass	Mass	MS ^E fragmentation (m/z)	Relative	Possible	Sources and
	(min)	formula	mode	l Mass (Da)	(Da)	Errors		abundan	compounds	sources and
						(mmu)		се		references
	3.15		[M-H] ⁻	353.0878	353.0879	0.1	353.0765/191.0485/85.0246	1.99E8	Cravete chlere a co	
11	3.18	$C_{16}H_{18}O_9$	[M+H]⁺	355.1024	355.1020	-0.4	355.1707/163.0389/135.0441/89 .0392	1.97E8	ic acid	mzCloud, (1)
12	3.33	$C_{15}H_{10}O_7$	[M+H]⁺	303.0499	303.0494	-0.5	303.0495/229.0494/153.0181/13 7.0233	7.61E8	Quercetin	mzCloud, (1)
13	3 51	C. H. O.	[M-H] ⁻	595.1305	595.1313	0.8	595.1305/300.0274/271.0249/25 5.0299/243.0297	9.60E8	Peltatoside	mzCloud
13	5.51	C261 128 C16	[M+H]⁺	597.1450	597.1447	-0.3	303.0496/229.0493/153.0181/85 .0290	5.65E8	r enaloside	mzeloud
14	3.54	$C_{17}H_{24}O_{10}$	[M+Na]⁺	411.1262	411.1251	-1.1	411.1257/249.0732/217.0468/20 3.0529	7.40E8	Geniposide	mzCloud, (3)
15	3.58	$C_{27}H_{30}O_{16}$	[M-H] ⁻	609.1461	609.1456	-0.5	609.1461/300.0274/271.0249/25 5.0299/243.0297	1.16E9	Rutin	mzCloud, (1)
16	3.60	C ₂₁ H ₂₀ O ₁₁	[M+H]⁺	449.1078	449.1071	-0.7	449.1098/303.0497/287.0548/15 3.0180/85.0290	5.50E8	Astragalin/Kaem pferol 3-O-	mzCloud, (1)
									glucoside	
17	3.87	$C_{15}H_{10}O_{6}$	[M+H] ⁺	287.0550	287.0546	-0.4	287.0547/153.0182/121.0286	4.49E8	Kaempferol	mzCloud, (1)
18	3.92	$C_{16}H_{12}O_7$	[M+H]⁺	317.0656	317.0650	-0.6	317.0653/302.0418/285.0389/15 3.0182	4.76E8	Isorhamnetin	mzCloud
			[M-H] ⁻	623.1618	623.1615	-0.3	623.1621/314.0432/299.0197/27 1.0250/243.0297/151.0025	6.72E8	Isorhamnetin 3- O-	
19	3.94	C ₂₈ H ₃₂ O ₁₆	[M+H] ⁺	625.1763	625.1748	-1.5	317.0654/302.0419/153.0182/85 .0290	3.49E8	neohesperidosid e	mzCloud

No.	t _R	Chemical	lon mode	Theoretica	Real Mass	Mass	MS ^E fragmentation (m/z)	Relative	Possible	Sources and
	(1111)	Tormula	mode	1 111235 (Da)	(Da)	(mmu)		Ce	compounds	references
20	4.03	C ₁₅ H ₁₂ O ₆	[M-H] ⁻	287.0561	287.0562	0.1	287.0460/150.9968/135.0385/10 7.0164/65.0029	1.25E8	Eriodictyol	mzCloud
21	4.08	C ₂₇ H ₃₀ O ₁₅	[M-H] ⁻	593.1512	593.1512	0	593.1514/285.0405/255.0299/22 7.0346	1.79E8	Kaempferol-3-	mzCloud, (1)
			[M+H]⁺	595.1657	595.1649	-0.8	287.0548/85.0290/71.0498	1.59E8	0-rutinoside	
22	4.27	$C_{21}H_{20}O_{11}$	[M+H] ⁺	449.1078	449.1071	-0.7	287.0548/153.0182	3.20E8	Kaempferol-7- O-glucoside	mzCloud
23	4.55	C ₂₃ H ₂₂ O ₁₂	[M+H] ⁺	491.1184	491.1178	-0.6	287.0548/187.0601/153.0182/10 9.0288	2.04E8	6"-O- Acetylastragalin	mzCloud, (1)
24	4.67	$C_{15}H_{10}O_5$	[M-H] ⁻	269.0455	269.0459	0.4	269.0368/225.1416/150.9975/13 7.0909/117.0289/85.0304	1.67E8	Apigenin	mzCloud
25	4.90	0 4 0	[M-H] ⁻	463.0882	463.0881	-0.1	463.0889/300.0274/271.0249/25 5.0299/151.0025	1.17E9	Quercetin-3β-D	maCloud (1)
25	4,91	$C_{21}\Pi_{20}O_{12}$	[M+H]+	465.1028	465.1020	-0.8	303.0497/229.0495/153.0181/85 .0290	3.04E8	ercetin	mzCioud, (T)
26	4.95	$C_{15}H_{12}O_5$	[M-H] ⁻	271.0612	271.0613	0.1	271.0519/177.0118/165.0124/11 9.0441/107.0164	4.43E8	Naringenin	mzCloud, (1)
27	5.03	C ₁₅ H ₁₂ O ₅	[M-H] ⁻	271.0612	271.0613	0.1	271.0520/150.9968/119.0441/10 7.0164	1.12E8	Naringeninchalc one	mzCloud
28	5.28	$C_9H_{16}O_4$	[M-H] ⁻	187.0976	187.0967	-0.9	187.0900/168.9837/125.0912	6.79E7	Eucommiol	mzCloud, (1)

eMethod 1. The specific preparation process of floral ethanolic extracts and EUFE.

After drying, removing the inedible parts, and grinding, floral powders were extracted. All extractions were performed in triplicates and stored at -80° C. Each sample (1.0 g) was weighed and extracted thrice with 80% aqueous ethanol solution (1:10, w/v) via the ultrasonic-assisted procedure (40°C, 500 w, 1 h). After centrifugation, the supernatants were pooled, combined, and blown by a nitrogen stream to remove ethanol. The remaining solution was re-dissolved using ultrapure water to 20 mL and filtered by a 0.22 µm filter membrane. The concentration of the resulting solution was 50 mg dry flower equivalents per millilitre (50 mg/mL). Since ethanol might have a relatively small residual effect, we used the vehicle solution based on a sham ethanol extraction experiment. For EUFE, we adopted the similar extraction method but more male flowers were used, ethanol solvent was removed with the rotatory evaporator and obtained extracts were lyophilized. The extract solution concentrations were presented in µg EUFE/mL.

eMethod 2. The specific process of synchronization and administration in *C.elegans*.

Synchronization: the young adult worms with intensive eggs were cleaned and collected by M9 buffer, then lysed with alkaline lysate for 5 min. The alkaline lysate consists of 50% 10-fold dilutions of sodium hypochlorite solution (NaOCl, 6~14% active chlorine basis, Macklin) and 50% 1 M sodium hydroxide solution. After centrifugation and washing 2~3 times with M9 to remove the lysis solution, their eggs were transferred into blank NGM plates and developed into L1 or L4 larvae at 20°C.

Administration: after 20 min under UV exposure, 60 mm NGM-plates with sufficient food were followed by the addition of the corresponding concentration of vehicle or sample solution (150 μ L) on the surface and placed at 4°C for storage after air-drying on super-clean table.

eMethod 3. The detailed calculation of the antioxidant potency composite index (APCI).

The antioxidant potency composite index (APCI) was calculated according to the following formula: DPPH_{index} + ABTS_{index} + FRAP_{index}

$$APCI = \frac{3}{3}$$

Taking DPPH_{Index} as an example, the calculation method was as follows :

DPPH value of sample

 $DPPH_{index} = \frac{DPPH}{DPPH \text{ maximum value of among 30 kinds of floral extracts}} \times 100$

The calculation method of $ABTS_{index}$ and $FRAP_{index}$ was similar. According to the above, 30 edible floral extracts 'APCI were summarised in **eTable 5**.

eMethod 4. The detailed procedures of diet preference assay.

100 μ L OP50 solution was added on the two sides of an NGM plate (10 cm in diameter). After the solution was air-dried, the vehicle or EUFE was covered on top of the lawn. After dried, a drop of M9 buffer that collected 80 L1-staged worms was plated in the middle of the plate, as shown in **eFigure 1A**. The worms located in either lawn were individually counted after 8 h at 20°C.

eMethod 5. The detailed procedures of microscopic fluorescence imaging.

Differently treated worms were anesthetized by using the M9 buffer with 5 mM levamisole and placed

at 1% agarose pads on thin glass slides. Under nonsaturating exposure conditions, the images were captured by using the Zeiss LSM 880 confocal microscope equipped with 10x air, 40x water- and 63x oil-immersion objectives (Carl Zeiss Inc., Germany).

Preparation of slides carrying samples. The slides (50 mm \times 24 mm \times 0.15 mm) were immersed in 1% agarose TAE Buffer that had warmed to clarity and quickly withdrawn to place on a clean plane for cooling. Then we used the blade to retain the agarose pad for one side on the middle part of the slides. The agarose pad was about 0.1~0.2 mm in thickness. M9 buffer with different anesthetized nematode strains (each at least 20 worms, using 5 mM levamisole hydrochloride to anesthetize) was dropped on the above pad and covered with a circular cover glass (13 mm diameter) for microscopic observation. Air bubbles should be avoided.

Muscle and mitochondrial morphologies. Since muscle and mitochondrial morphology cannot be well quantified, we emphasized the single-blindness of image capture, i.e., related photographers were not aware of the specific group settings. Both observations with the GFP channel, i.e., the excitation and emission wavelengths were 488 nm and 510~540 nm. For muscle fiber observation, we used the 40x water-immersion objective. Laser intensity was 5.0% for GFP imaging with a master gain of 630. An 8-bit digitization depth was used to acquire images, with constant detector offsets and master gain. Worms were pre-treated with vehicle or 100 μ g/mL EUFE for 1 and 5 d, and the photos of the head, midbody, and tail were taken respectively. For mitochondrial observation, treatment duration was 1 and 3 days. The other differences were that we used the 63x oil-immersion objective and set the master gain was 480. All the snapshots were taken from the same part of *C. elegans*: muscles from the upper part of the worm, excluding the regions of the esophagus and vulva.

Lipofuscin level. The wild-type worms were treated with vehicle or EUFE for 1, 5, and 9 d and their lipofuscin autofluorescence was detected using 488 nm ex / 500~560 nm em wavelengths. Except for the 10x air-immersion objective, other acquisition conditions were the same as in muscle fiber observation. And changes in nematode body size on 5 and 9 days resulted in different scale bars for the corresponding stitched images. Image quantification of fluorescence intensity was done densitometrically by tracing around each animal's intestine and determining mean pixel intensity using the Fiji software (https://imagej.net/Fiji/Downloads).

Intracellular localization of DAF-16. To investigate the effect of EUFE on the intracellular distribution of DAF-16, the TJ356 strain was selected. In this strain, the DAF-16 gene and the gene coding for the GFP have been fused. The intracellular distribution of DAF-16::GFP was assessed as 'cytosolic', 'intermediate', and 'nuclear' as shown in **Figure 4A**. Pileup maps represented the percentage in corresponding categories. Under the 10x air-immersion objective, the laser intensity was 10.0% for GFP imaging with a master gain of 630, and 8-bit digitization depth was used. And treatment duration of EUFE was 1 and 3 days.

Expression of LGG-1. Three days after the treatment, the DA2123 strain worms were captured for comparison of LGG-1 protein expression between groups. The extent of LGG-1 expression was indicated by counting the numbers of LGG-1::GFP positive puncta regions in the lateral epidermal seam cells of the whole worm. Acquisition conditions were the same as in DAF-16 observation.

Expression of SOD3. Three days after the treatment, the CF1553 strain worms were captured for comparison of SOD3 protein expression between groups. Acquisition conditions were the same as in DAF-16 observation. And the expression of SOD3 was compared by the mean relative fluorescence intensity of the pharynx and the tail. The values were measured using the Fiji software by selecting a region of interest (ROI).

Mitophagy detection. DsRed was excited with a 561 nm laser (650 nm emission filter). Treatment duration was one day for the vehicle, EUFE, and the positive control CCCP (a mitophagy inducer). Under the 63x oil-immersion objective, the laser intensity was 5.0% for GFP imaging with a master gain of 630 and 60.0% for DsRed imaging with a master gain of 650. Digitization depth of 8 bits was used for acquiring images, while detector offset and master gain were kept constant. All the snapshots were taken from the same part of *C. elegans*: muscles from the mid-body of the worm, excluding the regions of the esophagus and vulva. Colocalization analysis was performed by using the Colocalization Plugin integrated into the Fiji software.

eMethod 6. The detailed procedures of transmission electron microscopy.

Worms were fixed using 2.5% glutaraldehyde overnight (0.1 M, pH 7.4 phosphate buffer). After fixation, samples were rinsed with the buffer, post-fixed with 1% osmium tetroxide for 1-2 hours, rinsed again with the buffer, dehydrated by an ethanol series and acetone, infiltrated in a mixture of acetone and Spurr embedding agent, and embedded in 100% Spurr overnight and cured at 70°C for 36 h. Ultrathin sections (70~90 nm) were taken with the ultramicrotome Leica EM UC7 (Leica Microsystems Gmbh, Vienna, Austria) and transferred on 200-mesh copper grids. Grids were stained with lead citrate and uranyl acetate (saturated solution in 50% (v/v) ethanol). Sections were viewed by the Hitachi H-7650 (Hitachi, Tokyo, Japan). Images were obtained from representative sections taken from more than 10 worms in each group.

eMethod 7. The specific procedures of qualitative and quantitative analysis of EUFE.

For qualitative analysis, instrument control, data acquisition or analysis were performed by the Xcalibur software. Moreover, the raw data files were uploaded to Compound DiscovererTM and compound identification was achieved by matching with the mzCloud mass spectral library and manual validation. 10 μ L of the extract solution were injected into the UHPLC system and chromatographic separation was conducted on a UHPLC BEH C₁₈ column (2.1×100 mm, 1.7 μ m) (Waters, USA) at 40°C. 0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B) were used as aqueous and organic mobile phases, respectively. A gradient elution system was set up as follows: 0~3 min, 5~25% B; 3~4 min, 25~65% B; 4~10 min, 65% B; 10~10.1 min, 65~5% B; 10.1~13 min, 5% B. The flow rate was 0.3 mL/min. The instrument was operated in negative and positive ion modes to achieve full-scan analysis over an m/z range of 100~1000. And the optimized parameters are indicated below: the sheath gas flow rate (40 L/min); aux gas flow rate (10 L/min); spray voltage (3 kV); capillary temperature (320°C); probe heater temperature (350°C); S-lens RF level (50%).

For quantitative analysis, $10 \,\mu\text{L}$ of the extract solution was injected into the system and chromatographic separation was conducted on a reverse-phase ODS-2 Hypersil C₁₈ column (4.6×250 nm, 5 μ m) (Thermo Fisher Scientific, USA) at 30°C. The solvents used were 0.5% phosphoric acid aqueous solution (A) and methanol (B). The linear gradient of phase B was 0~30 min, 5~15%; 30~55 min, 15~30% at a flow rate of 1 mL/min.

eFigure 1 The scheme and results of diet preference assay in C.elegans.

(A) Scheme of the nematode dietary preference assay. EUFE or vehicle was placed on the *E. coli* lawn. (B) Dietary preference (for 8 h) of nematodes treated with EUFE and vehicle. For B, treatments with EUFE at a concentration of 100 μ g/mL and statistically non-significant at ns *P* > 0.05 by multiple *t*-test. Each experiment was repeated 3 times.

eFigure 2. Effects of ethanolic extracts of 18 edible flowers on *C.elegans* lifespan. The respective survival curves of nematodes treated with the remaining 18 flowers (non-significant or without longevity-promoting effect) (at 50 mg/mL concentration) or with the vehicle. N2 means *C. elegans* Bristol N2 strain wild-type nematodes. Flowers were abbreviated and numbered according to eTable 1. See eTable 4 for more detailed

eFigure 3. The survival rate of wild-type nematodes cultured on NGM plates containing 0.5, 1, 5, or 10 mg/mL EUFE or vehicle in 1 d and 7 d.

 eFigure 4. The body size (for 1 day) of nematodes treated with EUFE and

 vehicle.
 Treatments with EUFE at a concentration of 100 µg/mL and statistically non-significant at ns P > 0.05 by

 the unpaired t-test.
 Each experiment was repeated 3
 times.

eFigure 5. The reproductive ability (for whole reproductive stage) of nematodes treated with EUFE and vehicle. Treatments with EUFE at a concentration of 100 μ g/mL and statistically non-significant at ns *P* > 0.05 by the unpaired t-test. Each experiment was repeated 3 times.

eFigure 6. Representative images of muscle morphology at days 1 of adulthood of $p_{myo-3}MYO-3$::GFP nematodes treated with EUFE or vehicle.

Scale bar, 20 μm. The captured muscles were located at the head, mid-body, and tail of nematodes. Treatments withEUFEataconcentrationof100μg/mL.

eFigure 7. Representative images of muscle morphology at days 5 of adulthood of p_{myo-3} MYO-3::GFP nematodes treated with EUFE or vehicle. Scale bar, 20 µm. The captured muscles were located at the head, mid-body, and tail of nematodes. Treatments with EUFE at a concentration of 100 µg/mL. These images were parallel repeats of Figure 2G.

eFigure 8. Relative mRNA expression of *daf-16* gene in worms after treatment of vehicle or five identified compounds for 1 d. The concentration of each compound was 100 µM. *act-1* mRNA as the loading control. Statistically significant at *** *P* < 0.001 by unpaired *t*-test.

Each	experiment	was	repeated	3	times.
	•		•		

Reference

1. Yan Y, Zhao H, Liu X, Chai C, Wang S, Hua Y. Analysis of chemical constituents in male flowers of *Eucommia ulmoides* by liquid chromatography coupled with electrospray ionization-triple quadrupoletime of flight-tandem mass spectrometry (LC-ESI-Triple TOF-MS/MS). *Food Science*. 2018;39(06):215-221. doi: 10.7506/spkx1002-6630-201806034

2. Liu K, Wang J, Wei L, Pan Y, Yuan Y. Determination of eight constituents in the bark, leaves and male flowers of *Eucommia ulmoides* by HPLC. *Chinese Traditional Patent Medicine*. 2021;43(3):686-691. doi: 10.3969/j.issn.1001-1528.2021.03.023

3. Ding Y, Zhang T, Tao J, Guo C, Jin M, Ji G. Determination of geniposide in rat plasma by UPLC-MS. *Asian Journal of Chemistry*. 2013;25(7):3644-3650. doi: 10.14233/ajchem.2013.13691