
Electronic Supplementary Material (ESI) for Food & Function. This journal is © The Royal Society of Chemistry 2023

→ Rose-300

Figure S1. Schematic representation of sample processing.

	Rape	Buckwheat	Rose
Ash (%)	3.25 ± 0.04^{b}	4.37 ± 0.23^{a}	2.41±0.12°
Fat (%)	6.80 ± 0.36^{b}	$8.46{\pm}0.42^{a}$	1.65±0.14°
Protein (%)	$30.88{\pm}0.65^{a}$	$18.30{\pm}0.57^{b}$	$32.24{\pm}1.44^{a}$
Total sugar (%)	36.68±0.96°	42.43 ± 0.55^{b}	52.17±0.47ª
Starch (%)	$8.59 \pm 1.04^{\circ}$	13.61 ± 0.95^{b}	$18.02{\pm}1.68^{a}$
Fiber (%)	$7.50{\pm}0.76^{b}$	$8.77{\pm}0.4^{a}$	$8.55{\pm}0.82^{a}$

Table S1. Chemical composition of rape, buckwheat and rose bee pollen samples.

Results were expressed on a dry basis. Values with different letters in the same row are significantly different (p<0.05) from each other, which was carried out using one-way analysis of variance (ANOVA), followed by Duncan's multiple range tests.

Table S2. Elemental concentrations of rape, buckwheat and rose bee pollen samples.

	Rape	Buckwheat	Rose	
Macroelemen	t			
K (g/kg)	$5.10{\pm}0.10^{b}$	$11.40{\pm}0.00^{a}$	$5.40{\pm}0.20^{b}$	
Ca (g/kg)	$3.23{\pm}0.02^{a}$	$3.05{\pm}0.05^{b}$	$3.25{\pm}0.05^{a}$	
Mg (g/kg)	$1.72{\pm}0.02^{b}$	$5.44{\pm}0.04^{a}$	1.21±0.01°	
Na (mg/kg)	$66.50{\pm}3.50^{a}$	$31.00{\pm}3.00^{b}$	$32.50{\pm}2.50^{b}$	
Microelement				
Fe (mg/kg)	110.50±0.50 b	153.50±0.50ª	95.00±2.00°	
Zn (mg/kg)	39.50±0.50ª	$15.00{\pm}1.00^{b}$	$38.00{\pm}2.00^{a}$	
Mn (mg/kg)	$25.50{\pm}0.50^{b}$	$22.00{\pm}1.00^{b}$	182.5±2.5 ^a	
Cu (mg/kg)	$8.35{\pm}0.25^{b}$	4.25±0.05°	$11.50{\pm}0.50^{a}$	
Heavy metal elements				
Cr (mg/kg)	$0.23{\pm}0.02^{a}$	$0.17{\pm}0.04^{a}$	$0.11{\pm}0.02^{a}$	
Pb (mg/kg)	$0.32{\pm}0.06^{a}$	$0.27{\pm}0.13^{a}$	$0.15{\pm}0.00^{a}$	
Cd (mg/kg)	< 0.10	< 0.10	< 0.10	
As (mg/kg)	< 0.050	< 0.050	< 0.050	

Results were expressed on a dry basis. Values with different letters in the same row are significantly different (p<0.05) from each other, which was carried out using one-way analysis of variance (ANOVA), followed by Duncan's multiple range tests.