è	1		

Supplementary Data

2 Supplementary Methods

- 3 1. Detailed experimental procedures of 16S rDNA gene sequencing
- 4 2. Detailed data processing and analysis steps of 16S rDNA gene sequencing
- 5 3. Extraction and quantification of fecal bacterial genomic DNA
- 6 4. Experiment procedure of PCO fermentation broth administration

7 Supplementary Figures

8 Fig. S1. Quantification of intestinal bacteria in mice with/without gut microbiota depletion

9 Supplementary Tables

- 10 Table S1. Composition of gut microbiota medium
- 11 Table S2. Criteria for scoring disease activity index (DAI)
- 12 Table S3. List of primer sequences for RT-qPCR to determine gut microbiota abundances
- 13 Table S4. List of primer sequences for RT-qPCR analysis
- 14 Table S5. Statistics on raw/clean reads by 16S rDNA sequencing
- 15 Table S6. Number of OTUs for single sample
- 16

17 Supplementary Methods

18 1. Detailed experimental procedures of 16S rDNA gene sequencing

19 The amplification conditions were as follows: pre-denaturation at 95 °C for 3 min, 25 cycles of denaturation at 95 °C for 30 s, annealing at 55 °C for 30 s, and extension at 72 °C for 20 45 s. Purified amplicons were pooled in equimolar and paired-end sequenced (2×300) on an 21 Illumina MiSeq platform (Illumina, San Diego, CA, USA) by Beijing Allwegene Tech, Ltd 22 (Beijing, China). After the sequencing, data were analyzed via the QIIME pipeline 23 (Quantitative Insights into Microbial Ecology, USA). The row sequences were jointed and 24 selected (low-quality tags and chimeras that did not meet the length requirement were 25 removed). The unique sequence with a similarity larger than 97% was classified into an 26 27 operational taxonomic unit (OTU) by UCLUST (Version 1.2.22 http://www.drive5.com/uclust/downloads 1 2 22q.html). Chimeric sequences were identified 28 and removed using Usearch (Version 8.1.1861 http://www.drive5.com /usearch/). The 29 taxonomy of each 16S rRNA gene sequence was analyzed by UCLUST against the Silva 16S 30 rRNA database (Release119 http://www.arb-silva.de) using a minimum threshold of 90% 31 confidence. Then, an OTU table was generated for relative abundance plots and further 32 analysis. Finally, we conducted the Linear Discriminant Analysis Effect Size (LEfSe) analysis 33 to determine the noteworthy microbial taxa. 34

35 2. Extraction and quantification of fecal bacterial genomic DNA

36 Fecal samples (25 mg) were homogenized with 1% sterile PBS until the feces became mushy, followed by centrifugation at 3,000× g for 5 min. The upper bacterial solution was 37 treated with proteinase K, RNase, and lysozyme in a shaker at 37 °C for 1 h. After adding lysate 38 and DNA extraction agent, the bacterial solution was incubated in a water bath at 65 °C for 10 39 min. Then, the solution was centrifuged at 13,000× g for 10 min. The supernatant was collected 40 to precipitate DNA using isopropyl alcohol. After centrifugation, the DNA precipitation was 41 washed with 75% ethanol and dissolved in sterile water after drying at room temperature. The 42 bacterial DNA was quantified on a CFX Connect Real-time system (Bio-Rad, Hercules, CA, 43 USA) by using a 2 × FastHS SYBR QPCR mixture with the following thermal cycle condition: 44

Initial at 95 °C for 10 min, 34 cycles of amplification (30 s at 95 °C for denaturation, 30 s at 58 °C or 55 °C for annealing, 30 s at 72 °C for extension), terminal extension at 72 °C for 5 min. Two standard bacteria, i.e., *Bacteroides* and *Enterococcus* were used to represent Bacteroidetes and Firmicutes phyla, respectively. The primer sequences of target intestinal bacteria were listed in Supplementary Table 2. Bacterial contents were quantified by the standard curves using corresponding bacteria plasmids with gradient dilution.

51 3. Experiment procedure of PCO fermentation broth administration

52 The experiment procedure was as follows: 1) Ctrl group, received distilled water during the whole experimental period; 2) DSS group, received distilled water for the first three weeks, 53 followed by 3% DSS (dissolved in drinking water) in the fourth week; 3) DSS + Abx group, 54 received Abx (dissolved in drinking water) during the whole experimental period and 3% DSS 55 in the fourth week; 4) DSS + Abx + PCO group, received Abx during the whole experimental 56 period, PCO by gavage in the third and fourth weeks, and 3% DSS in the fourth week; 5) DSS 57 + Abx + FB group, received Abx during the whole experimental period, FB by gavage in the 58 59 third and fourth weeks, and 3% DSS in the fourth week; 6) DSS + Abx + PCO FB group, received Abx during the whole experimental period, PCO FB (200 mg/kg/d) by gavage in the 60 third and fourth weeks, and 3% DSS in the fourth week. The concentration of PCO FB was 61 converted into that of PCO solution before fermentation. At the end of the experiment, all mice 62 were euthanized. Mouse tissues were collected, and all samples were stored at -80 °C for further 63 analysis. 64

Fig. S1. Quantification of intestinal bacteria in mice with/without gut microbiota depletion. (A) Abundances of all bacteria in mice by RT-qPCR. (B–C) Phylum abundances of gut microbiota by RT-qPCR, in which *Bacteroides* (B) and *Enterococcus* (C) were used as representative bacteria of Bacteroidetes and Firmicutes phyla, respectively. Data were represented as mean \pm SEM (n = 8). *p < 0.05, **p < 0.01.

74 Supplementary Tables

Table S1. Composition of gut microbiota medium

Component	Content (g/L)
K ₂ HPO ₄	0.293
KH ₂ PO ₄	0.176
NaCl	0.443
$(NH_4)_2SO_4$	0.450
$CaCl_2$	0.045
$MgCl_2 \cdot 6H_2O$	0.093
L-cysteine	0.500
Ascorbic acid	0.500
Na ₂ CO ₃	4.000
Tryptone	1.000
Yeast extract	1.000

Score	Weight loss (%)	Stool consistency	Gross bleeding
0	None	Normal	Negative
1	1-5	Loose stool	Negative
2	5-10	Loose stool	Hemoccult positive
3	10-15	Diarrhea	Hemoccult positive
4	>15	Diarrhea	Gross bleeding

Name	Forward primer (5'-3')	Reverse primer (5'-3')
All bacteria	ACTCCTACGGGAGGCAGCAGT	ATTACCGCGGCTGCTGGC
Bacteroides	GGTTCTGAGAGGAGGTCCC	GCTGCCTCCCGTAGGAGT
Enterococcus	CCCTTATTGTTAGTTGCCATCATT	ACTCGTTGTACTTCCCATTGT

81 Table S3. List of primer sequences for RT-qPCR to determine gut microbiota abundances

Table S4. List of primer sequences f	for RT-qPCR analy	ysis
--------------------------------------	-------------------	------

Name	Forward primer (5'-3')	Reverse primer (5'-3')
Gapdh	AGGTCGGTGTGAACGGATTTG	TGTAGACCATGTAGTTGAGGTCA
Cox-2	CGAGTCGTTCTGCCAATA	CTGGTCGGTTTGATGCTA
Nlrp3	ATTACCCGCCCGAGAAAGG	TCGCAGCAAAGATCCACACAG
Π-1β	GGCTGGACTGTTTCTAATGC	ATGGTTTCTTGTGACCCTGA
Il-6	GAAACCGCTATGAAGTTCCTCTCTG	TGTTGGGAGTGGTATCCTCTGTGA
Tnf-α	GGGTGTTCATCCATTCTC	GGAAAGCCCATTTGAGT
Mucin-1	GGCATTCGGGCTCCTTTCTT	TGGAGTGGTAGTCGATGCTAAG
Mucin-2	ATGCCCACCTCCTCAAAGAC	GTAGTTTCCGTTGGAACAGTGAA
Mucin-3	CGTGGTCAACTGCGAGAATGG	CGGCTCTATCTCTACGCTCTCC
Zo-1	GAGCGGGCTACCTTACTGAAC	GTCATCTCTTTCCGAGGCATTAG
Occludin	TTGAAAGTCCACCTCCTTACAGA	CCGGATAAAAAGAGTACGCTGG
Mmp-9	GGACCCGAAGCGGACATTG	CGTCGTCGAAATGGGCATCT

Sample ID	Raw_Tags	Clean_Tags
Ctrl1	62086	60570
Ctrl2	61876	58610
Ctrl3	50601	48963
Ctrl4	30008	29660
Ctrl5	63573	62480
Ctrl6	29675	28923
Ctrl7	36659	34063
Ctrl8	53665	51047
DSS1	99595	97282
DSS2	77126	75012
DSS3	51432	49744
DSS4	59814	58109
DSS5	80992	78361
DSS6	82421	80066
DSS7	70089	67621
DSS8	58850	56054
PCO1	124147	115457
PCO2	50882	49838
PCO3	95632	92169
PCO4	86807	84479
PCO5	131093	127884
PCO6	82137	80173
PCO7	82482	80036
PCO8	87117	85192
DSS+PCO1	68567	66773
DSS+PCO2	85972	83318
DSS+PCO3	74522	71952
DSS+PCO4	107312	104329
DSS+PCO5	68502	66922
DSS+PCO6	84977	82444
DSS+PCO7	84644	80812
DSS+PCO8	83325	81784
Total	2366580	2290127

Table S5. Statistics on raw/clean reads by 16S rDNA sequencing

Sample ID	Final_tags	OTUs
Ctrl1	28573	473
Ctrl2	28573	501
Ctrl3	28573	434
Ctrl4	28573	590
Ctrl5	28573	463
Ctrl6	28573	334
Ctrl7	28573	581
Ctrl8	28573	525
DSS1	28573	486
DSS2	28573	450
DSS3	28573	530
DSS4	28573	439
DSS5	28573	491
DSS6	28573	476
DSS7	28573	416
DSS8	28573	493
PCO1	28573	585
PCO2	28573	625
PCO3	28573	631
PCO4	28573	601
PCO5	28573	620
PCO6	28573	510
PCO7	28573	637
PCO8	28573	579
DSS+PCO1	28573	511
DSS+PCO2	28573	618
DSS+PCO3	28573	510
DSS+PCO4	28573	447
DSS+PCO5	28573	539
DSS+PCO6	28573	567
DSS+PCO7	28573	512
DSS+PCO8	28573	544

Table S6. Number of OTUs for single sample