Electronic Supplementary Material (ESI) for Food & Function. This journal is © The Royal Society of Chemistry 2022

Characterization of a novel polysaccharide from *Arca subcrenata* and its immunoregulatory activities *in vitro* and *in vivo*

Hui Shi, $^{\dagger a,b}$ Jianhuan Li, $^{\dagger a}$ Fei Liu, $^{\dagger b}$ Sixue Bi, a Weijuan Huang, c Yuanyuan Luo, c Man Zhang, a Liyan Song, *c Rongmin Yu* *a,b and Jianhua Zhu* *a,b

Supplemental materials

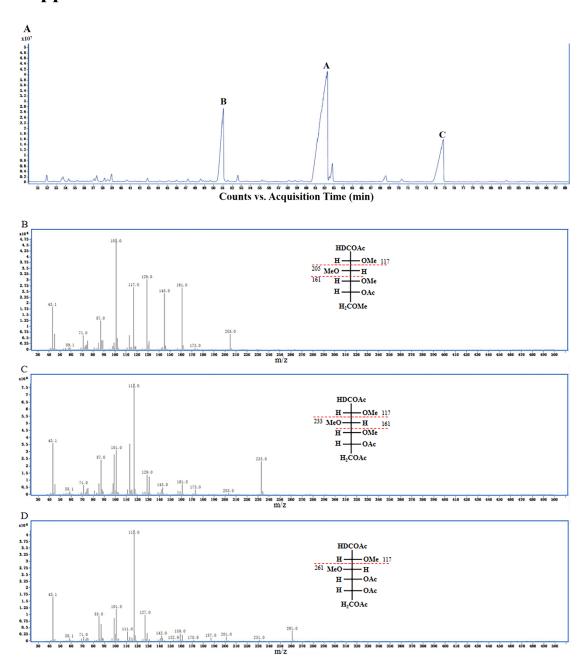


Fig. S1 GC chromatogram and corresponding mass spectra of PMAAs for ASPG-1. (A) GC chromatogram of ASPG-1. (B) The mass spectra of 1,5-Di-O-acetyl-2,3,4,6-tetra-O-methyl-D-glucitol. (C) The mass spectra of 1,5,6-Tri-O-acetyl-2,3,4-tri-O-methyl-D-glucitol. (D) The mass spectra of 1,4,5,6-Tetra-O-acetyl-2,3-di-O-methyl-D-glucitol.

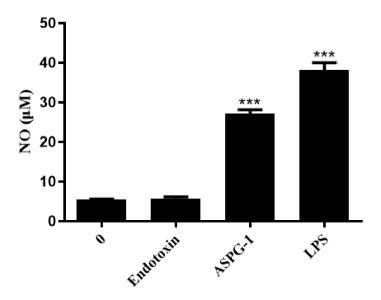
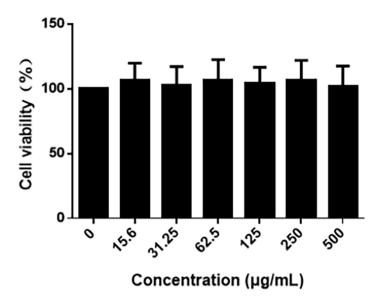
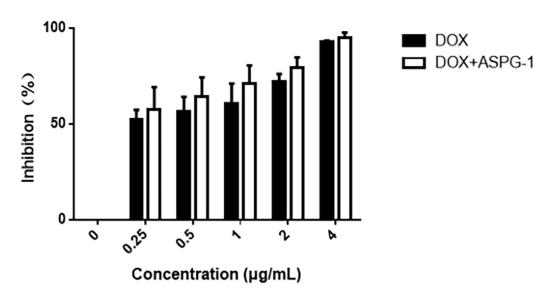




Fig. S2 Effect of endotoxin (5.8 EU/mL), ASPG-1 (500 μ g/mL), and LPS (1 μ g/mL) on NO production in RAW264.7 cells.

Fig. S3 Effect of ASPG-1 on proliferation of 4T1 cells. ASPG-1 had no antitumor effects on 4T1 cells *in vitro*.

Fig. S4 Effect of ASPG-1 combined with DOX on proliferation of 4T1 cells. ASPG-1 did not enhance the antitumor effect of DOX *in vitro*.