- 1 Supplementary Material
- 2
- 3 Postbiotics from Pichia kudriavzevii promote intestinal health performance
- 4 through regulation of Limosilactobacillus reuteri in weaned piglets
- 5
- 6 Zhenting Zhang^{1,2}, Qiujin Guo¹, Jing Wang¹, Hongyan Tan¹, Xuexia Jin¹, Yurong Fan¹,
- 7 Jiali Liu¹, Shumiao Zhao¹, Jinshui Zheng³, Nan Peng¹*
- 8
- 9¹ State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory,
- 10 College of Life Science and Technology, Huazhong Agricultural University, Wuhan,
- 11 430070, Hubei, P.R. China
- 12 ² The Key Laboratory of Environmental Pollution Monitoring and Disease Control,
- 13 Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang
- 14 550025, Guizhou, P.R. China.
- 15⁻³ State Key Laboratory of Agricultural Microbiology, College of Informatics,
- 16 Huazhong Agricultural University, Wuhan, 430070, Hubei, P.R. China
- 17 *Correspondence should be addressed to Nan Peng: Tel: +86 27 8728 1267, Fax: +86
- 18 27 8728 0670, Email: nanp@mail.hzau.edu.cn

22 Supplementary Figure 1. Supplementation of *P. kudriavzevii* postbiotics reduced

intestinal inflammation in early-weaned piglets. The concentration of intestinal proinflammatory factors (A-D) and anti-inflammatory factors (E and F) in the duodenum, jejunum, and ileum of the piglets from the groups of early-weaned piglets fed on a normal diet (FN), a normal diet with antibiotics (FA), or a normal diet with 0.5% yeast culture (FYC). Data are shown as mean \pm SD. Statistical analyses were performed using one-way ANOVA. Significance, ** *p* < 0.01, * *p* < 0.05.

29

32 Supplementary Figure 2. The effects of yeast postbiotics supplementation on 33 duodenum, jejunum, and ileum histological morphology. (A) HE staining; (B) PAS 34 staining. Normal diet (FN), a normal diet with antibiotics (FA), or a normal diet with 35 0.5% yeast culture (FYC). The images of the intestinal morphology at 40 × (HE) and 36 $100 \times$ (PAS) magnification (scale bars, 100 µm) are shown.

Supplementary Figure 3. The alpha and beta diversities of the intestinal bacterial communities. (A) Bacterial alpha diversity based on Chao 1 and observed species index (from 0 to 3 days) or (B) from 6 to 12 days. (C) Scatterplot from PCoA in bacterial communities based on the weighted UniFrac distance (from 0 to 3 days). Oneway ANOVA with adjustment for multiple comparisons was conducted. Significance, *p < 0.05.

47 Supplementary Figure 4. Supplement of yeast postbiotics affected the intestinal 48 bacterial taxonomic compositions. The shifts in the relative abundance of bacterial 49 phylum (A), class (B), order (C), and genus (D). One-way ANOVA with adjustment 50 for multiple comparisons was conducted. FN, FA, and FYC: groups of early-weaned 51 piglets fed on a normal diet (FN), a normal diet with antibiotics (FA), and a normal diet 52 with 0.5% yeast culture (FYC). Statistical analyses were performed using one-way 53 ANOVA. Significance, * p < 0.05.

57 Supplementary Figure 5. The relative abundances of pathogenic bacteria, 58 including *Treponema* (A), *Campylobacter* (B), and *shigella* (C), in different groups 59 at four time points. FN, FA, and FYC: groups of early-weaned piglets fed on a normal 60 diet (FN), a normal diet with antibiotics (FA), and a normal diet with 0.5% yeast culture 61 (FYC). Statistical analyses were performed using one-way ANOVA. Significance, * p62 < 0.05.

Supplementary Figure 6. Identification of the proteins from *P. kudriavzevii* 66 postbiotics. (A) Characteristics of the peptides of cytochrome c. Red represents the 67 peptides of cytochrome c. (B) SDS-PAGE analysis of heterogeneously expressed wild-68 69 type and detection of the characteristic absorption peak of cytochrome c. M, protein markers. (C) SDS-PAGE analysis of heterogeneously expressed mutant and detection 70 of the characteristic absorption peak of cytochrome c. M, protein markers. (D) 71 Sequence alignment of different cytochrome c. Horse-Cc was from the heart of a horse. 72 Pk-Cc was expressed from E. coli. Mutant-Cc was expressed in E. coli with haem iron 73 ligands changed, * represent mutant sites. Statistical analyses were performed using 74 one-way ANOVA. Significance, *** *p* < 0.001, ** *p* < 0.01, * *p* < 0.05. 75

77 Tables

	Component	Concentration,	
	Component	g/L	
Carbon Source	Glucose	15	
Amino Acids	L-Arginine	0.72	
	L-Asparagine	0.5	
	L-Histidine	0.17	
	L-Isoleucine	0.24	
	L-Leucine	1	
	L-Methionine	0.125	
	L-Valine	0.7	
Vitamins	Niacin	0.01	
	Biotin	0.004	
	Pantothenate	0.01	
	Lipoic acid	0.01	
	Folic acid	0.004	
	p-Aminobenzoic acid	0.01	
	Vitamin B1	0.01	
	Vitamin B2	0.01	
	Vitamin B6	0.01	
	Vitamin B12	0.01	
Inorganic Salts	FeSO ₄ ·7H ₂ O	0.005	
	K ₂ HPO ₄	6.48	
	KH ₂ PO ₄	3.12	
	$MgCl_2$	0.3864	
	NaCl	3	
	$ZnSO_4$	0.005	
	K_2SO_4	0.023	
	Boric acid	0.00075	
	CaCl ₂	0.03	
	CoCl ₂ ·6H ₂ O	0.00019	
	CuSO ₄	0.00012	
	KI	0.00011	
	MnSO ₄ ·H ₂ O	0.00034	
	(NH ₄)6Mo ₇ O ₂₄ ·4H ₂ O	0.00019	
Other	L-Glutathione reduced	0.015	
	Ammonium citrate dibasic	1.69	
	Citric acid·H ₂ O	0.003	

78 Table S1 CDM-medium composition (final pH 7).

Component	FN	FA	FYC
Corn	221.7	220.0	221.7
Whey Powder	150.0	150.0	150.0
Flour	90.0	90.0	90.0
Extruded soybean	100.0	100.0	100.0
Fermented soybean meal Fish	50.0	50.0	45.0
meal	40.0	40.0	40.0
Glucose	50.0	50.0	50.0
Soybean protein concentrate	80.0	80.0	80.0
Soybean oil	30.0	30.0	30.0
Calcium hydrophosphate	6.0	6.0	6.0
L-Lysine Sulphate (70%)	9.0	9.0	9.0
Zinc Oxide	2.1	2.1	2.1
Sodium chloride	3.0	3.0	3.0
Organic acid	3.0	3.0	3.0
L-Threonine (99%)	2.0	2.0	2.0
DL-Methionine (99%)	1.5	1.5	1.5
L-tryptophan (99%)	0.5	0.5	0.5
Choline chloride	0.5	0.5	0.5
Mildew preventive	0.5	0.5	0.5
Antioxidant	0.2	0.2	0.2
1% Premix (S811)	10.0	10.0	10.0
Second head	150.0	150.0	150.0
Enramycin (8%)	-	0.1	-
Quinocetone (50%)	-	0.1	-
Oxytetracycline calcium (20%)	-	1.5	-
Yeast culture	-	-	5.0

81 Table S2 The component of normal diet, antibiotics and yeast culture supplement.

Primers	Sequence (5'-3')
P13-epsH1-F	ATTACTCATCAGTCCCATACGCC
P13-epsH1-R	GAATGGCAAAGTGAGGACCAATC
P13-epsJ1-F	GGTTTAGGGTGCTAAATCGTGC
P13-epsJ1-R	AGCTTGTGGTTTTAAGGGCA
P13-epsL-F	CGAAACATTGGCCGCATAGTAG
P13-epsL-R	GTGAAGGTCTTGGGTTAGGAGG
P13-epsD-F	GTGAAGGTCTTGGGTTAGGAGG
P13-epsD-R	TTCGATGAGGATGAGCCATAGC
P13-secA2-F	CACTCATAGACTGGCTGCAATTG
P13-secA2-R	GGGGGCGATTGTCTTAAATCAAG
P13-gtf1-1-F	CCTGAACCCACTGCTTCCAT
P13-gtf1-1-R	TATTTACGGCGAGGGTGGTG
P13-luxS-F	GATCACACAAAGGTTAAGGCACC
P13-luxS-R	GAACAATCAATCACGCCATCCAA

83 Table S3 Information of primer pairs designed for qPCR.