## Sea cucumber sulfated polysaccharides and Lactobacillus gasseri synergistically ameliorate the overweight induced by altered gut microbiota in mice

Zhengqi Liu<sup>a,b,c</sup>, Chunqing Ai<sup>a</sup>, Xinping Lin<sup>a</sup>, Xiaoming Guo<sup>b</sup>, Shuang Song<sup>a,\*</sup>,

Beiwei Zhu<sup>a,b</sup>

<sup>a</sup> National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, P. R. China

<sup>b</sup> Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, P. R. China

<sup>c</sup> Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China

Fig. S1 Changes in body weight (A), daily intake (B), magnetic resonance imaging of fat distribution (C), LEE's index (D), and the amount of Lactic acid bacteria (E). Significant differences were based on one-way ANOVA with Duncan's range tests, whereas \* stands for p < 0.05.

**Fig. S2** The pie chart of relative abundance of gut mirobiota composition at phylum level in Normal group (A), Model group (B), SCSPsj+*L. gasseri* group(C), SCSPsj group (D) and *L. gasseri* group (E).

Fig. S3 The PCA graph of metabolites in serum samples (A) or feces samples (B).

Fig. S4 Comparison of metabolites between Normal and Model groups using OPLS-DA.

**Fig. S5** The content of acetic acid (A), propionic acid (B), butyric acid (C), isobutyric acid (D) and valeric acid (E).

 Table S1 Alpha diversity analysis index.



**Fig. S1** Changes in body weight (A), daily intake (B), magnetic resonance imaging of fat distribution (C), LEE's index (D), and the amount of Lactic acid bacteria (E). Significant differences were based on one-way ANOVA with Duncan's range tests, whereas \* stands for p < 0.05.



**Fig. S2** The pie chart of relative abundance of gut mirobiota composition at phylum level in Normal group (A), Model group (B), SCSPsj+*L. gasseri* group(C), SCSPsj group (D) and *L. gasseri* group (E).



Fig. S3 The PCA graph of metabolites in serum samples (A) or feces samples (B).



Fig. S4 Comparison of metabolites between Normal and Model groups using OPLS-DA.



**Fig. S5** The content of acetic acid (A), propionic acid (B), butyric acid (C), isobutyric acid (D) and valeric acid (E). Significant differences were based on one-way ANOVA with Duncan's range tests, whereas \* stands for p < 0.05.

| Sample             | OTUs | shannon | simpson | chao1    | ACE      | Goods coverage |
|--------------------|------|---------|---------|----------|----------|----------------|
| Normal-1           | 722  | 6.6431  | 0.9755  | 787.5775 | 776.6377 | 0.9985         |
| Normal-2           | 713  | 5.4195  | 0.9276  | 756.1818 | 750.2921 | 0.9988         |
| Normal-3           | 641  | 6.6786  | 0.98    | 801.3788 | 778.9286 | 0.9976         |
| Normal-4           | 663  | 6.4319  | 0.97    | 758.6742 | 771.459  | 0.9978         |
| Normal-5           | 727  | 6.7992  | 0.9695  | 766.8438 | 749.2378 | 0.9991         |
| Normal-6           | 453  | 6.2221  | 0.9725  | 556.9167 | 543.5267 | 0.9987         |
| Normal-7           | 763  | 6.6766  | 0.9708  | 808.4918 | 796.9811 | 0.9989         |
| Normal-8           | 650  | 5.413   | 0.934   | 692.5373 | 689.4026 | 0.9989         |
| Model-1            | 654  | 6.5222  | 0.9787  | 722.7826 | 732.9612 | 0.9982         |
| Model-2            | 615  | 6.0735  | 0.9597  | 657.3846 | 645.4088 | 0.9991         |
| Model-3            | 773  | 5.3306  | 0.8916  | 816.082  | 802.319  | 0.9989         |
| Model-4            | 762  | 6.8418  | 0.973   | 787.7381 | 779.5576 | 0.9991         |
| Model-5            | 699  | 6.0687  | 0.9545  | 774.8333 | 763.0488 | 0.9986         |
| Model-6            | 618  | 6.1485  | 0.9585  | 691.6154 | 673.4294 | 0.9987         |
| Model-7            | 737  | 6.781   | 0.9677  | 763.8966 | 750.9707 | 0.9993         |
| Model-8            | 680  | 5.2688  | 0.9246  | 715.1923 | 705.6425 | 0.999          |
| SCSPsj+L.gasseri-1 | 768  | 6.9818  | 0.97    | 829.875  | 783.5467 | 0.9991         |
| SCSPsj+L.gasseri-2 | 768  | 7.1003  | 0.9772  | 791.9032 | 781.484  | 0.9992         |
| SCSPsj+L.gasseri-3 | 659  | 5.5962  | 0.898   | 691.5111 | 701.1962 | 0.9989         |
| SCSPsj+L.gasseri-4 | 530  | 5.9106  | 0.9562  | 627.1154 | 617.4726 | 0.9984         |
| SCSPsj+L.gasseri-5 | 612  | 5.5059  | 0.9371  | 662.3235 | 641.5332 | 0.9991         |
| SCSPsj+L.gasseri-6 | 575  | 5.7508  | 0.9387  | 629.05   | 599.8719 | 0.9992         |
| SCSPsj+L.gasseri-7 | 653  | 5.6089  | 0.9354  | 665.4286 | 662.3894 | 0.9994         |
| SCSPsj+L.gasseri-8 | 659  | 6.1371  | 0.9564  | 682.4333 | 673.8375 | 0.9993         |
| SCSPsj-1           | 672  | 5.3857  | 0.9066  | 720.3636 | 697.3543 | 0.9991         |
| SCSPsj-2           | 510  | 5.4946  | 0.9507  | 602.1579 | 594.1848 | 0.9984         |
| SCSPsj-3           | 687  | 5.9081  | 0.9539  | 713.7273 | 707.0321 | 0.9992         |
| SCSPsj-4           | 625  | 5.7543  | 0.9464  | 686.9565 | 665.5734 | 0.9989         |
| SCSPsj-5           | 677  | 6.5801  | 0.9679  | 708.2    | 693.7909 | 0.9993         |
| SCSPsj-6           | 445  | 6.1592  | 0.9716  | 511.2791 | 517.3837 | 0.9989         |
| SCSPsj-7           | 545  | 4.4281  | 0.9019  | 641.9429 | 634.2838 | 0.9984         |
| SCSPsj-8           | 450  | 4.4542  | 0.8777  | 532.2692 | 527.4243 | 0.9987         |
| L.gasseri-1        | 762  | 7.0107  | 0.9778  | 777.9184 | 776.7741 | 0.9993         |

 Table S1 Alpha diversity analysis index.

| L.gasseri-2 | 534 | 4.9774 | 0.8957 | 601.0286 | 578.8991 | 0.999  |
|-------------|-----|--------|--------|----------|----------|--------|
| L.gasseri-3 | 658 | 6.1709 | 0.9691 | 729.4133 | 724.344  | 0.9985 |
| L.gasseri-4 | 719 | 5.1765 | 0.9112 | 747.0588 | 740.6394 | 0.9991 |
| L.gasseri-5 | 575 | 5.7891 | 0.9405 | 626.8485 | 616.751  | 0.999  |
| L.gasseri-6 | 563 | 6.2187 | 0.9733 | 678.0984 | 678.4531 | 0.9983 |
| L.gasseri-7 | 641 | 5.6353 | 0.9191 | 704.5714 | 698.728  | 0.9985 |
| L.gasseri-8 | 474 | 6.3275 | 0.9753 | 544.2885 | 553.1123 | 0.9986 |