Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Environmentally Sustainable, High-Performance Lignin-Derived Universal Adhesive

Sandip K. Singh,^a Kolja Ostendorf,^a Markus Euring,^a and Kai Zhang*,^a

^a Department of Wood Technology and Wood-based Composites, Georg-August-University of Göttingen, 37077 Göttingen, Germany

*E-mail: kai.zhang@uni-goettingen.de

Fig. S1 Characterization of lignin-based universal adhesive. (A) DSC curves of lignin and adhesive, and (B) TGA curves of lignin and adhesive in N_2 atmosphere. The adhesive in A, and B refers to the recipe with lignin:acrylic acid of 1.0:1.0 wt/wt.

Fig. S2 Total hydroxyl contents in lignin and adhesive (lignin: AA, 1.0:1.0 wt/wt) as determine by using ³¹P NMR spectroscopy.

Fig. S3 DMTA of adhesives (lignin:acrylic acid (AA) of 1.0:1.0 and 1.0:0.5, wt/wt). (A) Time sweep at 25 °C and 30% RH with a frequency of 10 Hz, (B) Frequency sweep at 25 °C and 30% RH, (C) RH sweep at 25 °C, with a frequency of 10 Hz, (D) Temperature sweep at 30% RH with a frequency of 10 Hz and temperature increasing rate of 2 K/min, and (E) photocopy of glued samples for DMTA; i- adhesive (lignin: acrylic acid (AA), 1.0:1.0 wt/wt), ii- adhe

Fig. S4 DMTA of polyvinyl alcohol (PVA). (A) Temperature sweep at 30% RH with a frequency of 10 Hz and temperature increasing rate of 2 °C/min, (B) Frequency sweep at 25 °C and 30% RH, (C) Relative humidity sweep at 25 °C, with a frequency of 10 Hz and, (D) Time sweep at 25 °C and 30% RH with a frequency of 10 Hz.

Material	Dimension (cm)		
	1	b	h
Glass (G)	5	5	0.1
Stainless steel (SS)	5	5	0.2
Aluminum (Al)	5	5	-
Polycarbonate (PC)	5	5	0.4
Note: (-) direct sample holder use	d for analysis	·	

 Table S1: Dimension of the glued materials used for internal bond strength

Fig. S5 A representative sketch dimension of the glued materials used for internal bond strength.

The internal bond strength (IBS) of polyvinyl alcohol-based adhesive was measured over Al york, and IBS 180.0 kPa was determined.

tests						
Material Dimension (cm)						
	1	b	h			
PVC	38.3	2.5	0.5			

2.5

2.5

0.5

0.6

39.2

58.0

PVC

PC

Table S2: Dimension of the glued materials used for vertical physical mechanical and weathering tests

Fig. S6 A representative sketch dimension along with the glued area of materials for vertical physical mechanical test.

Material	Dimension (cm)				
	1	b	h		
PVC	39.2	2.5	0.5		
PC	58.0	2.5	0.6		
PC	59.0	2.5	0.6		
Pine wood	58.0	2.5	0.5		
Glass	38.0	5.0	1.0		
Glass	39.0	5.0	1.0		

Table S3: Dimension of the glued materials used for horizontal physical mechanical testing

Fig. S7 A representative sketch dimension along with glued area of materials for horizontal physical mechanical test.