Electronic Supplementary Information (ESI)

Bypassing the bottlenecks in the shikimate and methylerythritol phosphate pathways for enhancing the production of natural products from methane in Methylotuvimicrobium alcaliphilum 20Z

Diep Ngoc Pham, ‡ Anh Duc Nguyen, ‡ So Hyeon Oh, and Eun Yeol Lee*

Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea.

^{*} Correspondence to: <u>eunylee@khu.ac.kr</u> (Tel: +82-31-201-3839; Fax: +82-31-204-8114)

[‡] These authors contributed equally to this work.

Supplementary Figures

Figure S1. Growth profiles of Ind-01 and Ind-02 strains in medium supplied with methane or methane and 0.5 g/L of tryptophan.

Figure S2. LC chromatograms of commercial indigo and synthetic indigo produced from Ind-03 strain.

	10	20	30	40	50	60	70	80
	••••	· · · · · · · ·						1
C.glutamicum	MEMVMKNKRVAIIGA	GPSGIAQLRA	FESAEKQGHE	IPELVCFEKQI	TWGGQWNYS	WRTGTDSYGE	PVHSSMYRNLW	ISNGP
M.aminisulfidivorans	MATRIAILGA	GPSGMAQLRA	FQSAQEKGAE	IPELVCFEKQ	DWGGQWNY	WRTGLDENGE	PVHSSMYRYLW	ISNGP
Clustal Consensus	.*:**:**	****:****	*:**:::* *	********	******	**** *. **	******* **	****
	110	120	130	140	150	160	170	18
								1
C.glutamicum	SYPPREVLWDYIAGR	KKSNVEKYI	KFAHVVRWVS	FDEATKLFTV	TVENLRTGE	TSSDTYDNVI	GAGHESEPNVE	HFDG
M. aminisulfidivorans	SYPPREVLWDYIKGR	VEKAGVRKYI	RENTAVRHVE	FNEDSQTFTV	TVQDHTTDTI	YSEEFDYVVO	CTGHESTPYVP	EFEG
Clustal Consensus	********* **	. : * : . * . * * *	:* .** *.	*:* :: ****	**:: *.	*: :* *:	:**** * **	. * : *
	210	220	230	240	250	260	270	28
								1
C.glutamicum	ADKDILLIGASYSAE	DIGTOAYKMG	ARSVTFSYRS	NPMGYEWPEEN	TELPLVER	DGSEVHEVNO	EKRKVDIVVFC	TGYL
M. aminisulfidivorans	KDKTVLLVGSSYSAE	DIGSOCYKYG	AKKLISCYRT	APMGYKWPEN	DERPNLVR	DTENAYFADO	SSEKVDAIILC	TGYI
Clustal Consensus	** :**:*:*****	***:*.** *	*:.: .**:	****:***:	* * : *.	* . : . : * . : *	* *** : : : *	***:
	310	320	330	340	350	360	370	38
								1
C.glutamicum	DTLYRGVVSEANNQL	FWLGAQDQWI	TENMEDAQAW	YVRDVILGRV	ALPSKEAQR	HMDQWLSRF	GLKSENDQIDE	QCDY
M.aminisulfidivorans	LNLYKGVVWEDNPKF	FYIGMODOWY	SENMEDAOAW	YARDVIMGRL	PLPSKEEMK	DSMAWREKEI	TLVTAEEMYTY	OGDY
Clustal Consensus	.**:*** * * :::	*::* ****	:*******	* ****:**:	***** :	. * .:	* : :: :	* **
	410	420	430	440	450	460	470	
C.glutamicum	ILKGWVKSKEEDILN	RDYTYTSVM	TGTTSVEHHT	PWMIELDDSL	RYLSEPOEL	EAROVYRGKI	WRDKA	
M. aminisulfidivorans	TFLEWKHHKKENIMT	RDHSYRSLM	TGTMAPKHHT	PWIDALDDSL	AYLSDKSE-	II	VAKEA	
Clustal Consensus	: * : *:*:*:	**::* *:*	*** : :***	**: *****	* ***: .*		* .:*	

Figure S3. Sequence alignment of Fmo from *C. glutamicum* and *M. aminisulfidivorans*.

Figure S4. Culture broth of Ind-04 strain in methane, methane plus xylose and methane plus tryptophan before (A) and after (B) centrifugation.

Figure S5. GC chromatograms (A) and mass spectrum chromatograms (B) of synthetic α-farnesene and commercial β-farnesene.

Figure S6. Exceretion of organic acids including formate and acetate during cultivation of engineered strains Ind-05 (A) and FAR-02 (B) on methane.

Supplementary Tables

Table S1. Strains and plasmids used in this study

Strain	Characteristic	Reference
Escherichia coli DH5α		Novagen
Corynebacterium glutamicum		КСТС
Methylophaga aminisulfidivorans		КСТС
Methylotuvimicrobium alcaliphilum 20Z	Used as host strain	DMSZ
Ind-01	M. alcaliphilum 20Z harboring pFMO-Cg plasmid	This study
Ind-02	M. alcaliphilum 20Z harboring pFMO-Ma plasmid	This study
Ind-03	M. alcaliphilum 20Z harboring pFMO-Ma-A plasmid	This study
Ind-04	M. alcaliphilum 20Z harboring pFMO-Ma-T plasmid	This study
Ind-05	M. alcaliphilum 20Z harboring pFMO-Ma-AT plasmid	This study
Ind-06	<i>M. alcaliphilum</i> 20Z harboring pFMO-Ma-AT plasmid with chromosomally integrated xylose-utilizing pathway genes	This study
FAR-01	M. alcaliphilum 20Z harboring pAFS plasmid	This study
FAR-02	M. alcaliphilum 20Z harboring pAFS-nDXP plasmid	This study

FAR-03	<i>M. alcaliphilum</i> 20Z harboring pAFS-nDXP plasmid with chromosomally integrated xylose-utilizing pathway gene	This study
Plasmid		
pAWP89	oriV oriT trfA ahp dTomato pTac	Puri et al. 2015 ¹
pCM351-XYL	pCM351-(FR)glgA containing construct for integrating P _{tac} -xylAB-rpe into chromosome	Nguyen et al. 2021 ²
pBs-02	pAWP89-based backbone carrying AgBS-ispA-dxs-ispG-ribB-DSAG-dxr	Nguyen et al. 2021 ³
pET-28a(+)	Expression vector with N-terminal His-tag	Novagen
pET-tna	pET-28a carrying <i>tnaA</i>	This study
pET-tna-Mfmo	pET-28a carrying tnaA and fmo from M. aminisulfidivorans	This study
pET-tna-Cfmo	pET-28a carrying tnaA and fmo from C. glutamicum	This study
pET-Trp	pET-28a carrying <i>aroG</i> ^{D146N} and <i>trpE</i> ^{S40F}	Pham et al. 2022 ⁴
pET-indigo-trpE	pET-28a carrying <i>tna-Mfmo-trpE</i> ^{S40F}	This study
pET-indigo-aroG-trpE	pET-28a carrying <i>tna-Mfmo-aroG</i> ^{D146N} - <i>trpE</i> ^{S40F}	This study
pFMO-Cg	pAWP89-based backbone carrying P_{tac} promoter and <i>tna-Cfmo</i> amplified from pET-28a-tna-Cfmo plasmid	This study
pFMO-Ma	pAWP89-based backbone carrying P_{tac} promoter and <i>tna-Mfmo</i> amplified from pET-28a-tna-Mfmo plasmid	This study

pFMO-Ma-A	pAWP89-based backbone carrying P _{tac} promoter and <i>tna-Mfmo-aroG</i> ^{D146N} amplified from pET-28a-indigo-aroG-trpE plasmid	This study
pFMO-Ma-T	pAWP89-based backbone carrying P _{tac} promoter and <i>tna-Mfmo-trpE</i> ^{S40F} amplified from pET-28a-indigo-trpE plasmid	This study
pFMO-Ma-AT	pAWP89-based backbone carrying P_{tac} promoter and tna - $Mfmo$ - $aroG^{D146N}$ - $trpE^{S40F}$ amplified from pET-28a-indigo-aroG-trpE plasmid	This study
pAFS	pAWP89-based backbone carrying P _{tac} promoter <i>afs</i> and <i>ispA</i>	This study
pAFS-nDXP	pAWP89-based backbone carrying P _{tac} promoter <i>afs</i> and <i>ispA</i> and <i>ribB-DSAG-dxr</i> amplified from pBs-02 plasmid	This study

Table S2. Primers used in this study

Primers	Primer sequences (5'-3')	Description	
pAWP89_fw	TAGTTGTCGGGAAGATGCG	For amplifying pAWP89 backbone, in which promoter Ptac and SD wer	
pAWP89_rv	AGCTGTTTCCTGTGTGAATA	kept.	
afs_fw	aggtattcacacaggaaacagctATGGAATTTCGGGTTCAT	For amplifying <i>afs</i> gene from synthetic <i>aFS</i> fragment to ligate to <i>ispA</i> and	
afs_ rv	agaggtactcagagaCTAGTTAACCAACGGTTG	pAWP89 backbone, resulting in pAFS plasmid.	
ispA_ fw	caaccgttggttaactag <u>GATCTGAGTACCTCTAGAAAATAAGGAGCAATCCA</u> ATG AGTAACGCACTGAAAG	For amplifying <i>ispA</i> gene from genomic DNA of <i>M. alcaliphilum</i> 20Z to	
ispA_rv	gcatcttcccgacaactaTTAATGATCTCGCTGGAT	ligate to <i>afs</i> and pAWP89 backbone, resulting in pAFS plasmid.	
pAWP89_fw	TAGTTGTCGGGAAGATGCG	For amplifying pAFS backbone, in which promoter P _{tac} , SD, <i>ispA</i> , and <i>afs</i>	
pAWP89_Far_rv	TTAATGATCTCGCTGGATAATA	genes were kept.	
ribBC_fw	atccagcgagatcattaaTTCACACAGGAAACAGCTATGAATCAGACGCTACTT	For amplifying <i>ribB-DSAG-dxr</i> fragment from pBs-02 plasmid, which was	
ribBC_rv	gcatcttcccgacaactaTTAACGCTTAAGTTCTTCGAC	ligate to pAFS backbone, resulting in pAFS-nDXP plasmid.	
tnaA_fw	gacagcaaatgggtcgcgATGGAAAACTTTAAACATCTCC	For amplifying <i>tnaA</i> gene from genomic DNA of <i>E. coli</i> to ligate to pET- 28a at BamHI restriction site, resulting in pET-28a-tna plasmid.	

tnaA_rv	cgacggagctcgaattcgTTAAACTTCTTTAAGTTTTGCG		
Mfmo_fw	acttaaagaagtttaacgTATTCACACAGGAAACAGCTATGGCAACTCGTATTGCG	For amplifying <i>fmo</i> gene from genomic DNA of <i>M. aminisulfidivorans</i> to	
Mfmo_rv	gcttgtcgacggagctcgTTAAGCTTCTTTAGCCACAG	Mfmo plasmid.	
Cfmo_fw	acttaaagaagtttaacg <u>TATTCACACAGGAAACAGCT</u> ATGAAGAATAAGCGCGTT	For amplifying <i>fmo</i> gene from genomic DNA of <i>C. glutamicum</i> to ligate	
Cfmo _rv	gcttgtcgacggagctcgTTAGGCTTTATCGCGGAC	plasmid.	
trpE_fw	gacagcaaatgggtcgcgTATTCACACAGGAAACAGCTATGCAAACACAAAAACC GACTCT	For amplifying <i>trpE</i> ^{fbr} from pET-Trp to ligate to pET-tna-Mfmo at NotI	
trpE_rv	gcttgtcgacggagctcgTCAGAAAGTCTCCTGTGC		
aroG_fw	gacagcaaatgggtcgcg <u>TATTCACACAGGAAACAGCT</u> ATGAATTATCAGAACGA CGA	For amplifying <i>aroG</i> ^{fbr} - <i>trpE</i> ^{fbr} from pET-Trp to ligate to pET-tna-Mfmo at - NotLrestriction site, resulting in pET-28a-Ma-AT plasmid.	
trpE_rv	gcttgtcgacggagctcgTCAGAAAGTCTCCTGTGC		
tnaA_89_fw	ttcacacaggaaacagctATGGAAAACTTTAAACATCTCC	For amplifying <i>tnaA-Mfmo</i> cluster gene from pET-28a-tna-Mfmo plasmid	
Mfmo_89_rv	gcatcttcccgacaactaTTAAGCTTCTTTAGCCACAG	to ligate to pAWP89 backbone, resulting in pFMO-Ma plasmid.	
tnaA_89_fw	ttcacacaggaaacagctATGGAAAACTTTAAACATCTCC	For amplifying tnaA-Cfmo cluster gene from pET-28a-tna-Cfmo plasmid	
Cfmo_89_rv	gcatcttcccgacaactaTTAGGCTTTATCGCGGAC	to ligate to pAWP89 backbone, resulting in pFMO-Cg plasmid.	
tnaA_89_fw	ttcacacaggaaacagctATGGAAAACTTTAAACATCTCC	For amplifying <i>tnaA-Mfmo-aroG</i> cluster gene from pET-28a-indigo-aroG	
aroG_89_rv	gcatcttcccgacaactaTTACCCGCGACGCGCTTTTA	plasmid.	
tnaA_89_fw	ttcacacaggaaacagctATGGAAAACTTTAAACATCTCC	For amplifying the A-Mfmo-trpE cluster gene from pET-28a-indigo-trpE	
trpE_89_rv	gcatcttcccgacaactaTCAGAAAGTCTCCTGTGC	plasmid to lighte to pAWP89 backbone, resulting in privo-Ma-AT	
tnaA_89_fw	ttcacacaggaaacagctATGGAAAACTTTAAACATCTCC	For amplifying <i>tnaA-Mfmo-aroG-trpE</i> cluster gene from pET-28a-indigo-	
trpE_89_rv	gcatcttcccgacaactaTCAGAAAGTCTCCTGTGC	Ma-AT plasmid.	

Homologous sequences used for Gibson Assembly are indicated by lower-case. Ribosome binding sites are underlined.

Table S3. Sequence of homologous genes used in this study

Gene	Sequence
tnaA (E. coli K12)	ATGGAAAACTTTAAACATCTCCCTGAACCGTTCCGCATTCGTGTTATTGAGCCAGTAAAACGTACCACTCGCGCTTATCGTGAAGAGGGCAATTATTAAATCCGGTAT GAACCCGTTCCTGCTGGATAGCGAAGATGTTTTATCGATTTACTGACCGACAGCGGCAGCGGGGCGGCGGCGCAGCGCAGAGCATGCAGGGCGGTGGCGATGACGCAGGCGGCGGCG ACGAAGCCTACAGCGGCAGTCGTAGCTACTATGCGTTAGCCGAGTCAGTGAAAAATATCTTTCGGTTATCAATACACCATTCCGACTCACCAGGGCCGTGGCGCAG AGCAAATCTATATTCCGGTACTGATTAAAAAACGCGAGCAGGAAAAAGGCCTGGATCGCAGCAAAATGGTGGCGTTCTCTAACTATTTCTTTGATACCACGCAGG GCCATAGCCAGATCAACGGCTGTACCGTGCGTAACGTCTATATCAAAGAAGCCTTCGATACGGGCGGCGGCGTTACGACTTTAAAGGCAACTTTGACCACGCAGG GCCATAGCCAGATCAACGGCTGTACCGTGCGTAACGTCTATATCAAAGAAGCCTTCGATACGGGCGGCGGCGTACGACCGGTTTCACTGGCAAACTTTGACCACGCAGG AAGCAGGTGTACAGCATCGCGAAAAATACGATATTCCGGTGGTAATGGACCTCGCGGCGCTTGCTGAAAACGCCTATTTCATTAAAGGCGGCGGCGAAACTTAA AAGCGGATGTACAGCATCGCGAAGAAATACGATATTCCGGTGGTGATGCGGCGGCTGCGCCAAGAAAGA
Cfmo (C. glutamicum)	ATGGAGATGGTTATGAAGAATAAGCGCGTTGCGATTATTGGTGCAGGTCCGAGTGGTATCGCTCAGTTGAGGGCGTTTGAGTCTGCTGAAAAGCAGGGTCATGA GATCCCTGAGCTGGTGTTTTTGAAAAGCAGGATACCTGGGGTGGGCAGTGGAATTACTCTTGGCGCACGGGAACAGACTCTTATGGTGAGCCTGTGCACTCAA GTATGTACCGAAACCTGTGGTCAAACGGTCCGAAGGAAGTTCTCGAATTTGCTGAGTACAGCTTCGGAGACCAGACCTTCGGAAAGCCAATTTCTTCTTACCCTCCACG TGAAGTGTTGTGGGAATTACATTGCAGGTCGTGCAAAGAAGTCGAACGTTGAGAAGTATATCAAGTTCGCGCATGTTGTTCGCTGGGTGAGTTTTGATGAGGCCAC CAAGCTGTTCACCGTGACGGTGGAGAACCTCCGCACCGGTGAGACCAGCAGTGATACTTATGACAACGTGATTGTTGGCGCTGGACACTTCAGTTTCCCGAACGT CCCTCACTTTGATGGTGTGGAGAACCTCCGCACGGTGAGACCAGCAGTGGATACTTATGACAACGTGATTGTTGGCGCTGGACACTTCAGTTTCCCGAACGT CCCTCACTTTGATGGTGTGGAGACCTTCCAGGCTCAGATCATGCACGCGTGGCGCAGAGGCTGTTGCTGACAAGGATATTTTGCTGATTGGTGCA AGTTATTCTGCGGAAGATATCGGTACCAAGGCGTACAAGATGGGTGCTCGTTCGGTGACATTGCTGGCGAGGCTGTTGGTGACAAGGGTGTGCCGAAGAG ATGACTGAGCTTCCTTTGGTTGAGCGGTTCGATGGCTCCGAGGTGCCCGTACGCTGTACCGGCGAGGCTATAACCAGCTGACA ACCATTACCCATTTATGCCGTCTGAGCTGACCTTAAGCTCACCAAACAACCTGTACCCGGATACGCTTTATCGTGGCGTGGCGCGCGAGGCTAATAACCAGCTGTTC TGGTTGGGCGCTCAGGATCAGTGGCTGACGTTTAAGCTCACCAAACAACCTGTAGGTGGACGCTGAAGAGCGCAAGGTGGCGTGGCGGTGGCGCGCGC
Mfmo (M. aminisulfidivorans)	ATGGCAACTCGTATTGCGATACTTGGTGCAGGCCCAAGTGGTATGGCACAACTCAGAGCATTCCAATCCGGCCCAGGAAAAAGGTGCTGAGATCCCTGAACTCGTT TGTTTTGAAAAACAAGCTGATTGGGGCGGCCAGTGGAATTACACATGGCGCACTGGTTTAGATGAAAATGGCGAACCTGTTCATAGCAGTATGTAT

CGATCTGCGTCTGGTCACCAATAACCGTTTAT	TGGCCGCTCAACCTTTATAAAGGCGTGGTG	TGGGAAGATAATCCAAAATTCTTCTACA	TGGCATGCAGGATCAA
TGGTACAGCTTCAATATGTTTGATGCCCAAG	CCTGGTATGCCCGTGATGTGATTATGGGTC	GACTGCCATTGCCATCAAAAGAAGAGAGA	GAAAGCCGACAGCATG
GCCTGGCGTGAAAAAGAACTGACGCTGGTTA	ACGGCTGAAGAAATGTACACCTACCAGGGT	GACTACATTCAGAATCTGATTGATATGA	CTGACTATCCGTCATTT
GATATTCCGGCAACCAACAAACTTTCCTGG	AATGGAAACATCACAAAAAAGAAAACATCA	ATGACTTTCCGTGACCACTCATACCGTTC/	ACTGATGACTGGCACGA
TGGCACCGAAACATCACACACCATGGATAGA	ATGCACTGGATGATTCTCTGGAAGCCTATCT	CTCTGATAAGAGCGAAATTCCTGTGGCT	AAAGAAGCTTAA

aroG^{fbr(D146N)}

trpE^{fbr(S40F)}

afs (codon-optimized)

	CCGATAACTTGAAATTTGCCCGGGATCGGTTGGTTGAATGCTTTTCGTGCGCCGTTGGCGTTGCCTTTGAACCGGAACATTCGTCGTTTCGGATCTGCTTGACCAA
	AGTTATCAACTTGGTTTTGATCATCGATGATGTTTATGATATCTATGGCTCGGAAGAAGAATTGAAACATTTTACCAACGCCGTTGATCGGTGGGATTCGCGGGAA
	ACCGAACAATTGCCGGAATGCATGAAAATGTGCTTTCAAGTTTTGTATAACACCACCTGCGAAATCGCCCGGGAAATCGAAGAAGAAAACGGCTGGAACCAAGTT
	TTGCCGCAATTGACCAAAGTTTGGGCCGATTTTTGCAAAGCCTTGTTGGTTG
	ACGGCTGCATCTCGTCGGCTTTCGGTTTTGTTGGTTCATTCGTTTTTTCGATCACCCATGAAGGCACCAAAGAAATGGCCGGCTTTTTGCATAAAAACGAAGAT
	TTGTTGTATAACATCTCGTTGATCGTTCGGTTGAACAACGATTTGGGCACCTCGGCCGCCGAACAAGAACGGGGGCGATTCGCCGTCGTCGATCGTTTGCTATATGC
	GGGAAGTTAACGCCTCGGAAGAAACCGCCCGGAAAAAACATCAAAGGCATGATCGATAACGCCTGGAAAAAAGTTAACGGCAAATGCTTTACCACCAACCA
	CCGTTTTTGTCGTCGTTTATGAACAACGCCACCAACATGGCCCGGGTTGCCCATTCGTTGTATAAAGATGGCGATGGCTTTGGCGATCAAGAAAAAGGCCCGCGG
	ACCCATATCTTGTCGTTGTTTCAACCGTTGGTTAACTAG
ispA (M. alcaliphilum	
20Z)	ATGAGTAACGCACTGAAAGACTATCTCTCCTTTTGTCAAAACCGTGTCGAAAGAGCCCTTGGAAGCCCCGACTGCCAAGCGAAAACCAAATTCCGACAAAATTGCAC
/	GAAGCGATGCGCTATTGCGTGCTGGACGGCGGTAAACGCATGCGTCCGATGCTAACCTACTGTACAGGAAAAGCCGTGGGCATTGCACCGGAAGATTTAGATGG
	CGCGGCCTGTGCGGTTGAATTCATTCATGTTTATTCGTTGATACATGACGATTTGCCGGCCATGGACGACGACGACCTCAGACGCGGAAAGCCGACCTGTCATATC
	GCTTATGATGAAGCGACCGCCATTTTGACCGGCGACGCTTTACAAGCATTGGCATTCAAGGTCTTGGCTGACGACCCTACCATCCGAGCCGATGCCGAAAGCCGT
	CTAAAAATGATTACGTTGCTGGCTAAGGCTAGCGGCTCTCAAGGCATGGTCGGCGGCCAAGCCATCGATTTAGAATCGGTCGG
	CTTGAAAATATGCATATCCACAAGACCGGAGCGTTAATTCGAGCCAGCGTCAACATGGCGACGTTAACGAGACCCGATATCGACCCGAAACAGGCCGAAGGGCT
	CGATCATTACGCAAAATGCATCGGCCTATCCTTCCAAGTCAAGGATGATATTTTGGACGAAGAAAGCGATACCGCAACACTCGGCAAAAACCCAAGGCAAGGACAA
	AGACAACGACAAGCCGACTTACCCTGCCTTACTCGGCTTGGCCGGCGCAAAGCAAAAGCTCAGGAACTTCATGAGCAAGCCATTGAAAGCTTAAACGGATTCGG
	CCCCGAAGCCGATCTGCTTCGTGACTTGTCGCTTTATATTATCCAGCGAGATCATTAA
ribB ^{G113S 3}	
	ATCATCGAAAAACCTTTACCTCGATCACCGACAACGACCGCGCGTTTACGATCAAAAAAGCTGGCCGAGCTGGTCAAGGAAGG
	AATTCCGCTCGCCGGGTCATGTCACCTTGCTGCGCGCCGCCGAAGGTTTGGTCAAAAATCGGCAAGGCCATACCGAAATGACCGTCGCCTTGGCGGAATTGGCCA
	ATTTGGTGCCGATTACGACGATTTGCGAAATGATGGGCGATGACGGCAATGCGATGTCGAAAAACGAAACGAAACGCTATGCCGAAAAACATAATCTGATTTATT
	TAAGCGGCGAAGAAATCATCAATTATTATTTGGATAAATATCTGAAAGAC
dxr (M. alcaliphilum	ATGAAAGGTATTTGTATTTTGGGCGCGACCGGTTCTATCGGTGTCAGCACGCTGGATGTGGTTGCTCGCCATTCGAATCGGTATAGAGTCGTTGCGTTGACCGCG
202)	AACAATAATATCGACCTGCTGCTGCACCAATGCATCGTCCATCGTCCTGACTATGTTGTCGTGGTTGATGAAAAATAAGGCTAAACAATTTGCAGAGCGCATTGCTA
	CATCGCCGGTATCCGATATAAAGGTGTTATCGGGAGCCGAATCGTTGCAGCAAGTAGCTACACTGGATAGTGTTGATTCGGTAATGGCGGCAATCGTCGGCGCG
	GCTGGTCTATTACCAACTTTGGCGGCTGCTAAAGCCGGTAAAACCGTATTGCTGGCAAATAAAGAAGCGTTGGTGATGTCCGGCGATATTTTTATGAAAGCGGTT
	ACCGAGTCCGGTGCCCATTTGCTGCCGATCGATAGCGAGCATAATGCCATTTTTCAATGCATGC
	GCGAATTTTGTTGACTGCCTCGGGTGGCCCGTTCAGAACTAAGCCGGTAGAAGAGTTGGTCGATGTCACTCCGGATCAAGCCGTCGCGCATCCGAATTGGGATAT
	GGGGCGTAAGATTTCTGTCGATTCTGCGACGATGATGAATGA
	GATCCATCCGCAAAGCGTGATTCATTCAATGGTCGATTATGTCGACGGCACTGTGTTGGCGCAAATGGGTAACCCCGATATGCGAATACCCATTGCGCATGCGAT
	GGCGTGGCCGGAACGCTTCGACTCCGGTGCGCCGCCGCTGAATATATTCGACGTTAAGCACATGGATTTCGAACAACCCGATCTTCAGCGTTTCCCTTGTTTACGC
	TTGGCGATTGAAGCCGTCGAGGCAGGCGGTATTATGCCGGCTGTGTGAAATGCCGCCGCTAATGAAATCGCGGTTGCTGCCTTTTTGGACGAGAAAGTCCGTTTTACC
	GACATCCCTTACATTGAACGGAGCATGCATCAATTCGAAGCCGATCCGGCGGATACGCTGGATATTGGCAGCCGATAGCAAAGCCCAGGGAAGTGGCT
	GAGCGTATCGTCGAAGAACTTAAGCGTTAA

Table S4. The production of indigo and farnesene in previous studies. (n.d: not determined)

Host strain	Product	Substrate	Culture conditions	Titer	Production yield	References
E. coli	Indigo	Tryptophan (1.0 g/L)	Optimized medium (3.55 g/L NaCl, 5.12 g/L yeast extract); Batch culture	307.4 mg/L	n.d	Dai et al. ⁵
E. coli	Indigo	Tryptophan	Tryptophan medium (2 g/L tryptophan, 5 g/L yeast extract, 10 g/L NaCl); Continuos fermentation, 3000 L	911 mg/L	0.234 mg/g tryptophan	Han et al. ⁶
E. coli	Indigo	Glycerol (5 g/L) Tryptophan (0.5 g/L)	M9 medium; Consortium cultivation; Batch fermentation.	104.3 mg/L	n.d	Chen et al. ⁷
M. alcaliphilum 20Z	Indigo	Methane (176 mg)	NMS medium; Fed-batch culture, 50 mL	3.5 μg/L	0.994 ug/g methane	This study
M. alcaliphilum 20Z	Indigo	Methane (135 mg) Xylose (641 mg)	NMS medium; Semi fed-batch culture, 50 mL	6.3 μg/L	0.421 ug/g substrates	This study
S. cerevisiae	Farnesene	Cane syrup	Culture medium (15 g/L NH ₄ H ₂ PO ₄ , trace element, vitamin); Fed-batch fermentation, 250 mL	130 g/L	143 mg/g glucose	Meadows et al. ⁸
Yarrowia lipolytica	Farnesene	Glucose	Modified YPD medium (50 g/L glucose, 20 g/L tryptone, 10 g/L yeast extract); Fed-batch fermentation, 800 mL	25.55 g/L	n.d	Liu et al. ⁹
S. elongatus PCC 7942	Farnesene	CO ₂	BG-11 medium (10 mM MOPS, 5% CO_2 , 100 μ E/(m2 s) continuous fluorescent light); Fed-batch fermentation, 100 mL	12.99 mg/L	n.d	N.P. et al. ¹⁰
M. alcaliphilum 20Z	Farnesene	Methane (140 mg)	NMS medium; Fed-batch culture, 50 mL	48.98 mg/L	17.49 mg/g methane	This study
M. alcaliphilum 20Z	Farnesene	Methane (130 mg) Xylose (740 mg)	NMS medium; Semi fed-batch culture, 50 mL	91.55 mg/L	5.26 mg/g substrates	This study

References

1. A. W. Puri, S. Owen, F. Chu, T. Chavkin, D. A. Beck, M. G. Kalyuzhnaya and M. E. Lidstrom, *Appl. Environ. Microbiol.*, 2015, **81**, 1775-1781.

- 2. A. D. Nguyen, T. H. T. Chau and E. Y. Lee, *Chemical Engineering Journal*, 2021, **420**, 127632.
- 3. A. D. Nguyen, D. N. Pham, T. H. T. Chau and E. Y. Lee, *Microorganisms*, 2021, **9**, 1236.
- 4. D. N. Pham, D. H. A. Mai, A. D. Nguyen, T. H. T. Chau and E. Y. Lee, *Chemical Engineering Journal*, 2022, **429**, 132522.
- 5. C. Dai, Q. Ma, Y. Li, D. Zhou, B. Yang and Y. Qu, *Bioprocess and biosystems engineering*, 2019, **42**, 1963-1971.
- 6. G. H. Han, S. E. Bang, B. K. Babu, M. Chang, H.-J. Shin and S. W. Kim, *Process biochemistry*, 2011, **46**, 788-791.
- 7. T. Chen, X. Wang, L. Zhuang, A. Shao, Y. Lu and H. Zhang, *Microbial cell factories*, 2021, **20**, 1-11.
- 8. A. L. Meadows, K. M. Hawkins, Y. Tsegaye, E. Antipov, Y. Kim, L. Raetz, R. H. Dahl, A. Tai, T. Mahatdejkul-Meadows and L. Xu, *Nature*, 2016, **537**, 694-697.
- 9. Y. Liu, X. Jiang, Z. Cui, Z. Wang, Q. Qi and J. Hou, *Biotechnology for biofuels*, 2019, **12**, 1-11.
- 10. N. Pattharaprachayakul, H. J. Lee, A. Incharoensakdi and H. M. Woo, *Journal of agricultural and food chemistry*, 2019, **67**, 13658-13664.