Supporting Information

Synthesis of β -hydroxysulfides via visible-light-driven and EDA

complex-promoted hydroxysulfenylation of styrenes with

heterocyclic thiols in EtOH under photocatalyst-free conditions

Ziren Chen, Fei Xue, Tianxiang Liu, Bin Wang, Yonghong Zhang, Weiwei Jin, Yu Xia

and Chenjiang Liu*

Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, P. R. China. E-mail: pxylcj@126.com

Table of Contents

1. General information	S2
2. Experimental procedures	S3
2.1 General procedure for synthesis of substrates	S3
2.2 General procedure for synthesis of products	S4
3. Gram-scale reaction	S4
4. Mechanistic studies	S5
4.1 Radical trapping experiments	S5
4.2 Isotope labeling experiments	S5
4.3 UV-vis spectroscopic measurements	S7
4.4 ¹ H NMR experiments	S8
4.5 EPR experiments	S9
5. Characterization of products	S10
6. References	S25
7. NMR spectra of products	S26
8. X-Ray crystallography data of 3a and 3c	S68

1. General information

General. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a Varian Inova-400 or Bruker-400 (400 MHz, 100 MHz and 376 MHz, respectively) spectrometer. ¹H and ¹³C NMR chemical shifts were determined relative to internal standard TMS at δ 0.0, DMSO- d_6 (δ (¹H), 2.50 ppm; δ (¹³C), 39.52 ppm) or CDCl₃ (δ (¹H), 7.26 ppm; δ (¹³C), 77.16 ppm). Chemical shifts (δ) are reported in ppm, and coupling constants (J) are in Hertz (Hz). The following abbreviations are used to explain the multiplicities: s =singlet, d = doublet, t = triplet, q = quartet, m = multiplet. The HRMS analysis was obtained on a Bruker SolariX-70FT-MS mass spectrometer. X-ray single crystal diffraction data were collected on a Bruker D8 Venture. EPR spectra were recorded on a Bruker EMXPLUS spectrometer. The melting point was recorded on BÜCHI (M-560) and uncorrected. Optical absorption spectra were recorded on a Thermo Nanodrop 2000c UV/Vis spectrometer. The photocatalytic reactions were performed on WATTECS Parallel Light Reactor (WP-TEC-1020L). Analytical thin layer chromatography (TLC) was performed on 0.25 mm silica gel 60 F254 plates and viewed by UV light (254 nm). Column chromatographic purification was performed using 200-300 mesh silica gel.

Materials. All the chemical reagents were purchased from commercial sources and used as received unless otherwise indicated. Starting materials 2b-u,^[1] 2w^[2] are known compounds and synthesized according to the reported method.

The Light Source. Manufacturer: Xi'an WATTECS experimental equipment co. LTD

Figure S1. Light Reactor.

Figure S2. Emission spectrum of white LED light (6000-6500 K).

2. Experimental procedures

2.1 General procedure for synthesis of substrates

2.1.1 A typical procedure for the synthesis of 2b-u:

Under a nitrogen atmosphere, a solution of Grignard reagents (8.8 mL, 1.0 M in THF, 8.8 mmol) was added dropwise to a solution of carbonyl compounds (4.0 mmol) in dry THF (15 mL) at room temperature. After 0.5 h stirring, diethylphosphite (0.62 mL, 4.8 mmol) was added. The reaction mixture was stirred and monitored by TLC analysis. After the reaction finished, the reaction was quenched with water and extracted with EtOAc (3×20 mL). The combined organic phase was dried over anhydrous MgSO₄, filtered, and all the volatiles were evaporated under reduced pressure. The resultant residue was purified by silica gel column chromatography.

2.1.2 A typical procedure for the synthesis of 2w:

To a flask charged with methyltriphenylphosphonium bromide (3.57 g, 10 mmol,

2 equiv.) and 30 mL of anhydrous THF at 0 °C was added *n*-butyllithium (4 mL, 2.5 M in hexanes, 10 mmol, 2 equiv.). The reaction was allowed to warm to room temperature spontaneously and then stirred for 1 h. Cyclopropyl(phenyl)methanone (5 mmol, 1 equiv.) in anhydrous THF (3 mL) was added dropwise, and the reaction was stirred for 12 h at 40 °C. After the reaction finished, the reaction was quenched with brine and extracted with EtOAc (3×20 mL). The combined organic layers were washed with water three times, dried (anhydrous MgSO₄), filtered, and concentrated. The residue was purified by flash chromatography to afford the desired product.

2.2 General procedure for the synthesis of products (taking 3a as an example)

Under air, a mixture of 2-mercaptobenzoimidazole **1a** (90.1 mg, 0.6 mmol), 1,1diphenylethylene **2a** (53 μ L, 0.3 mmol), K₂CO₃ (20.7 mg, 0.15 mmol) and C₂H₅OH (1.0 mL) were added to a 15 mL quartz tube. The reaction mixture was stirred and irradiated using 10 W white LED for 16 h. After the reaction finished, the resulting mixture were evaporated under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: DCM/CH₃OH = 250 : 1, v/v) to afford the desired product **3a** in 94% yield.

3. Gram-scale reaction

To a 100 mL round bottom flask with magnetic stirrer, 2-mercaptobenzoimidazole **1a** (1.80 g, 12 mmol), 1,1-diphenylethylene **2a** (1.06 mL, 6 mmol) and K₂CO₃ (414.63 mg, 3 mmol) were dissolved in C₂H₅OH (20 mL), and then the round bottom flask was stirred under the irradiation of white LED strip in open air at room temperature for 24

h. After the reaction finished, the resulting mixture was evaporated under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: DCM/CH₃OH = 250 : 1, v/v) to afford the desired product **3a** in 90% yield.

4. Mechanistic studies

4.1 Radical trapping experiments

N N H	-SH +	K ₂ CO ₃ , EtOH quencher 16 h, rt, air 10 W white LED	
1a	2a		3a
Entry	Quencher	Yield of 3a (%)	Conclusions
1	TEMPO (4 equiv.)	51	radical
2	BHT (4 equiv.)	44	radical
3	benzoquinone (2 equiv.)	0	superoxide radical

Under air, a mixture of 2-mercaptobenzoimidazole **1a** (90.1 mg, 0.6 mmol), 1,1diphenylethylene **2a** (53 μ L, 0.3 mmol), K₂CO₃ (20.7 mg, 0.15 mmol), radical scavengers (4.0 equiv. or 2.0 equiv.) and C₂H₅OH (1.0 mL) were added to a 15 mL quartz tube. The reaction mixture was stirred and irradiated using 10 W white LED for 16 h. After the reaction finished, the resulting mixture was evaporated under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: DCM/CH₃OH = 250 : 1, v/v) to afford the desired product **3a**.

4.2 Isotope labeling experiments

4.2.1 Isotope labeling experiment with H₂¹⁸O

Under air, a mixture of 2-mercaptobenzoimidazole **1a** (90.1 mg, 0.6 mmol), 1,1diphenylethylene **2a** (53 μ L, 0.3 mmol), K₂CO₃ (20.7 mg, 0.15 mmol), H₂¹⁸O (10 equiv.) and C₂H₅OH (1.0 mL) were added to a 15 mL quartz tube. The reaction mixture was stirred and irradiated using 10 W white LED for 16 h. After the reaction finished, the resulting mixture was evaporated under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: DCM/CH₃OH = 250 : 1, v/v) to afford the desired product **3a** in 95% yield. Then the product was analyzed by HRMS. HRMS of **3a**: calcd. for $C_{21}H_{19}N_2OS$ [M+H]⁺: 347.1213; found 347.1219.

Figure S3. HRMS of 3a.

A mixture of 2-mercaptobenzoimidazole **1a** (90.1 mg, 0.6 mmol), 1,1diphenylethylene **2a** (53 μ L, 0.3 mmol), K₂CO₃ (20.7 mg, 0.15 mmol) and C₂H₅OH (1.0 mL) were added to a 15 mL quartz tube. Then the reaction tube was equipped with a ¹⁸O₂ balloon. The reaction mixture was stirred and irradiated using 10 W white LED for 16 h. After the reaction finished, the resulting mixture was evaporated under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: DCM/CH₃OH = 250 : 1, v/v) to afford the desired product ¹⁸O-3a in 94% yield. Then the product was analyzed by HRMS.

HRMS of ¹⁸O-3a: calcd. for C₂₁H₁₉N₂¹⁸OS [M+H]⁺: 349.1255; found 349.1262.

Figure S4. HRMS of ¹⁸0-3a.

4.3 UV-vis spectroscopic measurements

The UV/vis absorption spectra of 2-mercaptobenzoimidazole **1a** (0.06 M), 1,1diphenylethylene **2a** (0.03 M) with and K_2CO_3 (0.015 M) in EtOH were recorded in 1 cm path quartz cuvettes by using a Thermo Nanodrop 2000c UV/Vis spectrophotometer, respectively (Figure S5).

Figure S5. UV–vis spectroscopic measurements on various combinations of 1a, 2a, and K_2CO_3 in EtOH.

4.4 ¹H NMR experiments

¹H NMR experiments were performed by the preparation of DMSO- d_6 solutions containing 2-mercaptobenzimidazole (**1a**), 1,1-diphenylethylene (**2a**) and K₂CO₃ in different ratios, keeping constant the amount of 1,1-diphenylethylene (0.15 mol/L) and increasing the amount of **1a** and K₂CO₃ (**1a** : K₂CO₃ : **2a** = 0 : 0 : 1, 1 : 1 : 1, 2 : 2 : 1, 3 : 3 : 1, 4 : 4 : 1 and 5 : 5 : 1). The figure S6 shows the full spectras collected. The evidence of interaction between **1a** and **2a** is highlighted in figure S7, where is possible to observe the change in the chemical shifts of 1,1-diphenylethylene **2a** shifted upfield with increasing amounts of **1a** and K₂CO₃.

Figure S6. Solutions of 1a and 2a examined by the ¹H NMR.

Figure S7. Evidence for the formation of EDA complex through ¹H NMR.

4.5 EPR experiments

(A) Standard conditions: A mixture of 2-mercaptobenzoimidazole 1a (90.1 mg, 0.6 mmol), 1,1-diphenylethylene 2a (53 μ L, 0.3 mmol), K₂CO₃ (20.7 mg, 0.15 mmol), C₂H₅OH (1.0 mL) and DMPO (12 μ L) was open to air and stirred under the irradiation of 10 W white LED at room temperature for 30 min. Afterwards, this mixture was analyzed by EPR.

(B) Without visible-light irration: A mixture of 2-mercaptobenzoimidazole 1a (90.1 mg, 0.6 mmol), 1,1-diphenylethylene 2a (53 μ L, 0.3 mmol), K₂CO₃ (20.7 mg, 0.15 mmol), C₂H₅OH (1.0 mL) and DMPO (12 μ L) was open to air and stirred at room temperature for 30 min. Afterwards, this mixture was analyzed by EPR.

(C) N₂ atmosphere: Under N₂, a mixture of 2-mercaptobenzoimidazole 1a (90.1 mg, 0.6 mmol), 1,1-diphenylethylene 2a (53 μ L, 0.3 mmol), K₂CO₃ (20.7 mg, 0.15 mmol), C₂H₅OH (1.0 mL) and DMPO (12 μ L) was stirred under the irradiation of 10 W white LED at room temperature for 30 min. Afterwards, this mixture was analyzed by EPR.

Figure S8. EPR experiments.

5. Characterization of Products

2-((1H-benzo[d]imidazol-2-yl)thio)-1,1-diphenylethan-1-ol (3a): 97.9 mg, 94% yield. White solid. m.p.: 292.7-293.2 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.49 (s, 1H), 7.56-7.54 (m, 4H), 7.42 (s, 2H), 7.31 (t, *J* = 7.4 Hz, 4H), 7.20 (t, *J* = 7.3 Hz, 2H), 7.13-7.09 (m, 2H), 6.64 (s, 1H), 4.34 (s, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 151.6, 146.7, 127.9(8), 126.7, 125.9, 121.4, 76.5, 43.8. HRMS (ESI) m/z Calcd for C₂₁H₁₉N₂OS [M+H]⁺: 347.1213; Found: 347.1209.

2-((5,6-difluoro-1*H*-benzo[*d*]imidazol-2-yl)thio)-1,1-diphenylethan-1-ol (3b):

103.4 mg, 90% yield. Light yellow solid. m.p.: 177.5-178.8 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 12.70 (s, 1H), 7.62-7.57 (m, 1H), 7.54 (d, J = 7.9 Hz, 4H), 7.44-7.40 (m, 1H), 7.31 (t, J = 7.4 Hz, 4H), 7.21 (t, J = 7.2 Hz, 2H), 6.49 (s, 1H), 4.35 (s, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 153.5, 146.5, 146.2 (dd, J = 235.0, 14.0 Hz), 138.9 (d, J = 9.0 Hz), 130.7 (d, J = 13.0 Hz), 127.9(8), 126.8, 125.8, 104.7 (d, J = 21.0 Hz), 98.5 (d, J = 22.0 Hz), 76.3, 43.9(5). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -145.18 (d, J = 23.3 Hz), -146.27 (d, J = 23.3 Hz). HRMS (ESI) m/z Calcd for C₂₁H₁₇F₂N₂OS [M+H]⁺: 383.1024; Found: 383.1028.

2-((5,6-dichloro-1*H***-benzo[***d***]imidazol-2-yl)thio)-1,1-diphenylethan-1-ol (3c): 120.5 mg, 97% yield. White solid. m.p.: 147.9-149.8 °C. ¹H NMR (400 MHz, DMSO***d***₆) δ 12.77 (s, 1H), 7.68 (s, 2H), 7.54-7.51 (m, 4H), 7.33-7.29 (m, 4H), 7.23-7.18 (m, 2H), 6.42 (s, 1H), 4.35 (s, 2H). ¹³C NMR (100 MHz, DMSO-***d***₆) δ 155.0, 146.5, 128.1, 126.8, 125.9, 123.8, 76.3, 43.9. HRMS (ESI) m/z Calcd for C₂₁H₁₇Cl₂N₂OS [M+H]⁺: 415.0433; Found: 415.0447.**

2-((5,6-dimethyl-1*H***-benzo[***d***]imidazol-2-yl)thio)-1,1-diphenylethan-1-ol (3d): 106.7 mg, 95% yield. White solid. m.p.:160.9-163.3 °C. ¹H NMR (400 MHz, DMSOd_6) \delta 12.24 (s, 1H), 7.56-7.54 (m, 4H), 7.30 (t, J = 7.4 Hz, 5H), 7.21-7.17 (m, 2H), 7.11 (s, 1H), 6.75 (s, 1H), 4.29 (s, 2H), 2.27 (s, 6H). ¹³C NMR (100 MHz, DMSO-d_6) \delta 150.2, 146.8, 127.9, 126.7, 125.9, 76.6, 43.9, 19.9. HRMS (ESI) m/z Calcd for C₂₃H₂₃N₂OS [M+H]⁺: 375.1526; Found: 375.1516.**

2-((1*H***-imidazol-2-yl)thio)-1,1-diphenylethan-1-ol (3e)**: 66.0 mg, 74% yield. White solid. m.p.: 156.4-158.3 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.20 (s, 1H), 7.52 (d, *J* = 7.4 Hz, 4H), 7.28 (t, *J* = 7.4 Hz, 4H), 7.18 (t, *J* = 7.3 Hz, 2H), 7.03 (s, 2H), 4.05 (s, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 147.0, 140.9, 127.9, 126.5, 125.9, 76.8, 45.1. HRMS (ESI) m/z Calcd for C₁₇H₁₇N₂OS [M+H]⁺: 297.1056; Found:297.1067.

2-((4,5-diphenyl-1*H***-imidazol-2-yl)thio)-1,1-diphenylethan-1-ol (3f)**: 127.6 mg, 95% yield. White solid. m.p.: 90.3-92.6 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.46 (s, 1H), 7.56-7.53 (m, 4H), 7.48-7.45 (m, 2H), 7.38-7.36 (m, 4H), 7.33-7.28 (m, 7H), 7.24-7.17 (m, 3H), 6.88 (s, 1H), 4.17 (s, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 146.9, 141.8, 136.5, 134.7, 130.7, 128.7, 128.3, 128.2, 127.9, 127.8, 127.6, 126.9, 126.7, 126.6, 125.9(8), 76.8, 44.8. **HRMS** (ESI) m/z Calcd for C₂₉H₂₅N₂OS [M+H]⁺: 449.1682; Found: 449.1680.

2-((1-methyl-1*H***-imidazol-2-yl)thio)-1,1-diphenylethan-1-ol (3g)**: 49.6 mg, 53% yield. White solid. m.p.: 161.8-163.7 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 7.50-7.47 (m, 4H), 7.29-7.25 (m, 4H), 7.20-7.15 (m, 3H), 6.92 (d, J = 1.2 Hz, 1H), 6.79 (s, 1H), 4.02 (s, 2H), 3.39 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 146.9, 141.9, 127.8(4), 127.8(0), 126.5, 125.9, 122.9, 76.8, 46.0, 32.8. HRMS (ESI) m/z Calcd for

C₁₈H₁₉N₂OS [M+H]⁺: 311.1213; Found: 311.1214.

2-(benzo[d]oxazol-2-ylthio)-1,1-diphenylethan-1-ol (3h): 87.4 mg, 84% yield. White solid. m.p.: 113.7-115.1 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.64-7.59 (m, 2H), 7.56-7.53 (m, 4H), 7.35-7.29 (m, 6H), 7.24-7.19 (m, 2H), 6.43 (s, 1H), 4.42 (s, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 165.1, 151.2, 146.0, 141.3, 128.1, 126.9, 125.8, 124.5, 124.1, 118.1, 110.1, 75.9(9), 44.8. HRMS (ESI) m/z Calcd for C₂₁H₁₇NO₂SNa [M+Na]⁺: 370.0872; Found: 370.0871.

2-(benzo[*d*]thiazol-2-ylthio)-1,1-diphenylethan-1-ol (3i): 65.9 mg, 60% yield. White solid. m.p.: 105.8-108.0 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.97 (d, *J* = 8.0 Hz, 1H), 7.86 (d, *J* = 8.1 Hz, 1H), 7.55 (d, *J* = 7.5 Hz, 4H), 7.47-7.43 (m, 1H), 7.36-7.30 (m 5H), 7.22 (t, *J* = 7.4 Hz, 2H), 6.40 (s, 1H), 4.43 (s, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 167.5, 152.6, 146.2, 134.5, 128.0, 126.9, 126.3, 125.8, 124.3, 121.7, 120.9(5), 76.2, 45.6. HRMS (ESI) m/z Calcd for C₂₁H₁₈NOS₂ [M+H]⁺: 364.0824; Found: 364.0825.

2-((1,3,4-thiadiazol-2-yl)thio)-1,1-diphenylethan-1-ol (3j): 69.5 mg, 74% yield. White solid. m.p.: 170.5-172.6 °C. ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 9.45 (s, 1H), 7.53-7.50 (m, 4H), 7.33-7.29 (m, 4H), 7.23-7.19 (m, 2H), 6.36 (s, 1H), 4.37 (s, 2H). ¹³**C** **NMR** (100 MHz, DMSO-*d*₆) δ 166.5, 153.6, 146.1, 128.0, 126.9, 125.8, 76.2, 46.7. **HRMS** (ESI) m/z Calcd for C₁₆H₁₅N₂OS₂ [M+H]⁺: 315.0621; Found: 315.0627.

2-((2-methyl-2*H***-tetrazol-5-yl)thio)-1,1-diphenylethan-1-ol (3k)**: 74.1 mg, 79% yield. White solid. m.p.: 106.9-109.2 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.51-7.48 (m, 4H), 7.32-7.27 (m, 4H), 7.23-7.18 (m, 2H), 6.32 (s, 1H), 4.31 (s, 2H), 3.78 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 154.3, 145.9, 128.0, 126.9, 125.8, 76.1, 46.2, 33.5. HRMS (ESI) m/z Calcd for C₁₆H₁₆N₄OSNa [M+Na]⁺: 335.0943; Found: 335.0942.

2-((1*H***-benzo[***d***]imidazol-2-yl)thio)-1-phenyl-1-(***p***-tolyl)ethan-1-ol (4a): 92.3 mg, 85% yield. White solid. m.p.: 144.4-146.0 °C. ¹H NMR (400 MHz, DMSO-***d***₆) \delta 12.45 (s, 1H), 7.54-7.50 (m, 3H), 7.42 (d,** *J* **= 8.2 Hz, 2H), 7.34-7.28 (m, 3H), 7.21-7.17 (m, 1H), 7.13-7.08 (m, 4H), 6.54 (s, 1H), 4.30 (s, 2H), 2.24 (s, 3H). ¹³C NMR (100 MHz, DMSO-***d***₆) \delta 151.7, 146.9, 143.8, 135.8, 128.5, 127.9(5), 126.7, 125.8, 121.4, 117.1, 110.3, 76.4, 43.9(5), 20.6. HRMS (ESI) m/z Calcd for C₂₂H₂₁N₂OS [M+H]⁺: 361.1369; Found: 361.1364.**

2-((1*H***-benzo[***d***]imidazol-2-yl)thio)-1-phenyl-1-(***m***-tolyl)ethan-1-ol (4b): 94.6 mg, 88% yield. White solid. m.p.: 152.3-153.4 °C. ¹H NMR (400 MHz, DMSO-***d***₆) δ 12.43 (s, 1H), 7.55-7.50 (m, 3H), 7.37 (s, 1H), 7.34-7.28 (m, 4H), 7.21-7.16 (m, 2H),**

7.13-7.08 (m, 2H), 7.01 (d, J = 7.4 Hz, 1H), 6.54 (s, 1H), 4.31 (s, 2H), 2.26 (s, 3H). ¹³C **NMR** (100 MHz, DMSO- d_6) δ 151.6, 146.7, 146.6, 143.4, 136.9, 135.4, 127.9, 127.8(5), 127.3, 126.6, 126.4, 125.8, 122.9(8), 121.5, 121.2, 117.1, 110.2, 76.4, 43.9, 21.3. **HRMS** (ESI) m/z Calcd for C₂₂H₂₁N₂OS [M+H]⁺: 361.1369; Found: 361.1364.

2-((1*H***-benzo[***d***]imidazol-2-yl)thio)-1-phenyl-1-(***o***-tolyl)ethan-1-ol (4c): 103.0 mg, 95% yield. White solid. m.p.: 143.3-145.1 °C. ¹H NMR (400 MHz, DMSO-***d***₆) \delta 12.46 (s, 1H), 7.74 (dd,** *J* **= 7.8, 1.3 Hz, 1H), 7.50 (s, 1H), 7.37-7.32 (m, 3H), 7.30-7.23 (m, 3H), 7.22-7.17 (m, 2H), 7.12-7.06 (m, 3H), 6.44 (s, 1H), 4.36 (d,** *J* **= 12.6 Hz, 1H), 4.21 (d,** *J* **= 12.5 Hz, 1H), 2.02 (s, 3H). ¹³C NMR (100 MHz, DMSO-***d***₆) \delta 151.5, 145.7, 143.3, 137.1, 132.2, 127.6, 127.4, 126.6, 126.3, 126.1, 125.1, 121.3, 76.9, 45.3, 21.3. HRMS (ESI) m/z Calcd for C₂₂H₂₀N₂OSNa [M+Na]⁺: 383.1189; Found: 383.1188.**

2-((1*H***-benzo[***d***]imidazol-2-yl)thio)-1-(4-(***tert***-butyl)phenyl)-1-phenylethan-1ol (4d): 116.4 mg, 96% yield. White solid. m.p.: 177.1-179.0 °C. ¹H NMR (400 MHz, DMSO-***d***₆) \delta 12.45 (s, 1H), 7.56-7.50 (m, 3H), 7.47-7.44 (m, 2H), 7.34-7.28 (m, 5H), 7.21-7.17 (m, 1H), 7.13-7.08 (m, 2H), 6.53 (s, 1H), 4.31 (s, 2H), 1.24 (s, 9H). ¹³C NMR (100 MHz, DMSO-***d***₆) \delta 151.6, 148.9, 146.7, 143.8, 135.4, 127.9, 126.6, 125.8, 125.5, 124.7, 121.3, 116.9, 110.2, 76.3, 43.9, 34.1, 31.1. HRMS (ESI) m/z Calcd for C₂₅H₂₇N₂OS [M+H]⁺: 403.1839; Found: 403.1834.**

2-((1*H***-benzo[***d***]imidazol-2-yl)thio)-1-(4-methoxyphenyl)-1-phenylethan-1-ol (4e): 99.6 mg, 88% yield. White solid. m.p.: 155.8-157.6 °C. ¹H NMR (400 MHz, DMSO-***d***₆) \delta 12.45 (s, 1H), 7.54-7.51 (m, 3H), 7.46-7.42 (m, 2H), 7.32-7.28 (m, 3H), 7.22-7.17 (m, 1H), 7.13-7.08 (m, 2H), 6.88-6.84 (m, 2H), 6.51 (s, 1H), 4.29 (s, 2H), 3.71 (s, 3H). ¹³C NMR (100 MHz, DMSO-***d***₆) \delta 157.9(5), 151.6, 146.9(5), 138.7, 127.9, 127.1, 126.6, 125.8, 121.3, 113.2, 76.2, 55.0, 44.0. HRMS (ESI) m/z Calcd for C₂₂H₂₀N₂O₂SNa [M+Na]⁺: 399.1138; Found: 399.1141.**

2-((1*H***-benzo[***d***]imidazol-2-yl)thio)-1-(4-ethoxyphenyl)-1-phenylethan-1-ol (4f): 102.3 mg, 87% yield. White solid. m.p.: 61.0-62.3 °C. ¹H NMR (400 MHz, DMSO-***d***₆) \delta 12.51 (s, 1H), 7.57-7.54 (m, 2H), 7.47-7.44 (m, 4H), 7.33-7.29 (m, 2H), 7.22-7.18 (m, 1H), 7.15-7.10 (m, 2H), 6.87-6.84 (m, 2H), 6.56 (s, 1H), 4.33 (s, 2H), 3.97 (q,** *J* **= 7.0 Hz, 2H), 1.29 (t,** *J* **= 7.0 Hz, 3H). ¹³C NMR (100 MHz, DMSO-***d***₆) \delta 157.3, 151.7, 146.9(9), 138.6, 127.9, 127.2, 126.6, 125.9, 121.4, 113.7, 76.3, 62.9, 44.1, 14.7. HRMS (ESI) m/z Calcd for C₂₃H₂₃N₂O₂S [M+H]⁺: 391.1475; Found: 391.1496.**

2-((1H-benzo[d]imidazol-2-yl)thio)-1-phenyl-1-(4-

(trifluoromethoxy)phenyl)ethan-1-ol (4g): 126.9 mg, 98% yield. White solid. m.p.: 75.3-77.1 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 12.49 (s, 1H), 7.69-7.65 (m, 2H), 7.58-7.51 (m, 3H), 7.35-7.29 (m, 5H), 7.25-7.21 (m, 1H), 7.14-7.09 (m, 2H), 6.83 (s, 1H), 4.38 (d, J = 13.0 Hz, 1H), 4.33 (d, J = 13.0 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 151.4, 147.1, 146.3, 146.1, 128.2, 127.9(6), 127.0, 125.9, 121.5, 121.4, 120.5, 118.9, 76.3, 43.7. ¹⁹F NMR (376 MHz, DMSO- d_6) δ -56.80 (s). HRMS (ESI) m/z Calcd for C₂₂H₁₈F₃N₂O₂S [M+H]⁺: 431.1036; Found: 431.1035.

2-((1*H***-benzo[***d***]imidazol-2-yl)thio)-1-(4-fluorophenyl)-1-phenylethan-1-ol (4h): 105.3 mg, 96% yield. White solid. m.p.: 158.7-160.3 °C. ¹H NMR (400 MHz, DMSO-***d***₆) δ 12.48 (s, 1H), 7.60-7.51 (m, 5H), 7.34-7.30 (m, 3H), 7.24-7.19 (m, 1H), 7.15-7.09 (m, 4H), 6.72 (s, 1H), 4.35 (d,** *J* **= 13.0 Hz, 1H), 4.30 (d,** *J* **= 13.0 Hz, 1H). ¹³C NMR (100 MHz, DMSO-***d***₆) δ 161.0 (d,** *J* **= 242.0 Hz), 151.4, 146.6, 142.9 (d,** *J* **= 3.0 Hz), 128.1, 128.0 (d,** *J* **= 9.0 Hz), 126.9, 125.9, 121.4, 114.6 (d,** *J* **= 21.0 Hz), 76.3, 43.9. ¹⁹F NMR (376 MHz, DMSO-***d***₆) δ -116.32 (s). HRMS (ESI) m/z Calcd for C_{21}H_{18}FN_2OS [M+H]^+: 365.1119; Found: 365.1097.**

2-((1*H***-benzo[***d***]imidazol-2-yl)thio)-1-(4-chlorophenyl)-1-phenylethan-1-ol (4i): 110.0 mg, 96% yield. White solid. m.p.: 141.8-143.1 °C. ¹H NMR (400 MHz, DMSO-***d***₆) \delta 12.48 (s, 1H), 7.57-7.51 (m, 5H), 7.37-7.30 (m, 5H), 7.22 (t,** *J* **= 7.3 Hz, 1H), 7.13-7.09 (m, 2H), 6.78 (s, 1H), 4.36 (d,** *J* **= 13.0 Hz, 1H), 4.30 (d,** *J* **= 13.0 Hz, 1H). ¹³C NMR (100 MHz, DMSO-***d***₆) \delta 151.4, 146.4, 145.7, 143.3, 135.5, 131.5, 128.2,** 127.9(5), 126.9(8), 125.9, 121.7, 121.3, 117.2, 110.3, 76.3, 43.7. **HRMS** (ESI) m/z Calcd for C₂₁H₁₈ClN₂OS [M+H]⁺: 381.0823; Found: 381.0825.

2-((1*H***-benzo[***d***]imidazol-2-yl)thio)-1-(4-bromophenyl)-1-phenylethan-1-ol (4j): 120.8 mg, 95% yield. White solid. m.p.: 140.1-141.3 °C. ¹H NMR (400 MHz, DMSO-***d***₆) \delta 12.48 (s, 1H), 7.55-7.50 (m, 7H), 7.34-7.30 (m, 3H), 7.24-7.20 (m, 1H), 7.13-7.09 (m, 2H), 6.78 (s, 1H), 4.35 (d,** *J* **= 13.0 Hz, 1H), 4.29 (d,** *J* **= 13.0 Hz, 1H). ¹³C NMR (100 MHz, DMSO-***d***₆) \delta 151.4, 146.3, 146.1, 143.3, 135.4, 130.9, 128.3, 128.2, 126.9(8), 125.8, 121.7, 121.3, 120.1, 117.2, 110.3, 76.3, 43.6. HRMS (ESI) m/z Calcd for C₂₁H₁₈BrN₂OS [M+H]⁺: 425.0318; Found: 425.0324.**

2-((1*H***-benzo[***d***]imidazol-2-yl)thio)-1-(3-bromophenyl)-1-phenylethan-1-ol (4k): 121.5 mg, 95% yield. White solid. m.p.: 144.6-145.6 °C. ¹H NMR (400 MHz, DMSO-***d***₆) \delta 12.47 (s, 1H), 7.74 (s, 1H), 7.57-7.51 (m, 4H), 7.40 (d,** *J* **= 7.9 Hz, 1H), 7.35-7.21 (m, 5H), 7.13-7.09 (m, 2H), 6.84 (s, 1H), 4.37 (d,** *J* **= 13.1 Hz, 1H), 4.30 (d,** *J* **= 13.0 Hz, 1H). ¹³C NMR (100 MHz, DMSO-***d***₆) \delta 151.3, 149.4, 146.1, 143.3, 135.4, 130.2, 129.6, 128.7, 128.1, 126.9(9), 125.8, 125.0, 121.6, 121.5(5), 121.2, 117.1, 110.3, 76.3, 43.5. HRMS (ESI) m/z Calcd for C₂₁H₁₈BrN₂OS [M+H]⁺: 425.0318; Found: 425.0312.**

2-((1*H***-benzo[***d***]imidazol-2-yl)thio)-1-(2-bromophenyl)-1-phenylethan-1-ol (4l): 119.4 mg, 94% yield. White solid. m.p.: 172.1-172.6 °C. ¹H NMR (400 MHz, DMSO-***d***₆) \delta 12.47 (s, 1H), 8.06 (dd,** *J* **= 7.9, 1.7 Hz, 1H), 7.52-7.45 (m, 3H), 7.37-7.29 (m, 5H), 7.27-7.19 (m, 2H), 7.13-7.09 (m, 2H), 6.80 (s, 1H), 4.72 (d,** *J* **= 12.7 Hz, 1H), 4.43 (d,** *J* **= 12.7 Hz, 1H). ¹³C NMR (100 MHz, DMSO-***d***₆) \delta 151.3, 144.9, 143.7, 143.4, 135.4, 134.7, 129.6, 129.4, 127.8, 127.2, 127.1, 126.9(8), 121.7, 121.4, 121.3, 117.2, 110.3, 76.9(9), 42.0. HRMS (ESI) m/z Calcd for C₂₁H₁₈BrN₂OS [M+H]⁺: 425.0318; Found: 425.0317.**

2-((1*H***-benzo[***d***]imidazol-2-yl)thio)-1-(4-(methylthio)phenyl)-1-phenylethan-1-ol (4m): 103.2 mg, 88% yield. White solid. m.p.: 120.0-121.9 °C. ¹H NMR (400 MHz, DMSO-***d***₆) \delta 12.44 (s, 1H), 7.54-7.46 (m, 5H), 7.34-7.29 (m, 3H), 7.22-7.18 (m, 3H), 7.13-7.08 (m, 2H), 6.61 (s, 1H), 4.33 (d,** *J* **= 12.9 Hz, 1H), 4.28 (d,** *J* **= 12.9 Hz, 1H), 2.43 (s, 3H). ¹³C NMR (100 MHz, DMSO-***d***₆) \delta 151.5, 146.7, 143.3, 136.4, 135.4, 127.9(7), 126.7, 126.5, 125.8, 125.5, 121.6, 121.2, 117.1, 110.2, 76.3, 43.8, 14.7. HRMS (ESI) m/z Calcd for C₂₂H₁₉N₂OS₂ [M-H]⁻: 391.0944; Found: 391.0946.**

2-((1H-benzo[d]imidazol-2-yl)thio)-1-phenyl-1-(4-

(trifluoromethyl)phenyl)ethan-1-ol (4n): 113.6 mg, 91% yield. White solid. m.p.: 143.1-145.0 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.48 (s, 1H), 7.78 (d, *J* = 8.2 Hz, 2H), 7.67 (d, *J* = 8.3 Hz, 2H), 7.58-7.52 (m, 3H), 7.34 (t, *J* = 7.8 Hz, 3H), 7.23 (t, *J* = 7.4 Hz, 1H), 7.14-7.09 (m, 2H), 6.92 (s, 1H), 4.42 (d, *J* = 13.1 Hz, 1H), 4.35 (d, *J* =

13.1 Hz, 1H). ¹³C **NMR** (100 MHz, DMSO-*d*₆) δ 151.2(0), 151.1(5), 146.1, 143.3, 135.4, 128.2, 127.4 (q, *J* = 31.0 Hz), 127.1, 126.8, 125.9, 124.90 (q, *J* = 3.0 Hz), 124.3 (q, *J* = 270.0 Hz), 121.6, 121.3, 117.1, 110.3, 76.5, 43.5. ¹⁹F **NMR** (376 MHz, DMSO-*d*₆) δ -60.88 (s). **HRMS** (ESI) m/z Calcd for C₂₂H₁₈F₃N₂OS [M+H]⁺: 415.1087; Found: 415.1083.

2-((1*H***-benzo[***d***]imidazol-2-yl)thio)-1-([1,1'-biphenyl]-4-yl)-1-phenylethan-1ol (4o): 121.6 mg, 96% yield. White solid. m.p.: 140.1-141.9 °C. ¹H NMR (400 MHz, DMSO-***d***₆) \delta 12.48 (s, 1H), 7.65-7.58 (m, 8H), 7.54-7.52 (m, 1H), 7.46-7.42 (m, 2H), 7.36-7.31 (m, 4H), 7.24-7.20 (m, 1H), 7.13-7.09 (m, 2H), 6.69 (s, 1H), 4.40 (d,** *J* **= 13.0 Hz, 1H), 4.36 (d,** *J* **= 12.9 Hz, 1H). ¹³C NMR (100 MHz, DMSO-***d***₆) \delta 151.5, 146.7, 145.9, 139.8, 138.6, 128.9, 128.0, 127.4, 126.8, 126.6, 126.5, 126.3, 125.8, 121.4, 76.4, 43.8. HRMS** (ESI) m/z Calcd for C₂₇H₂₃N₂OS [M+H]⁺: 423.1526; Found: 423.1525.

2-((1H-benzo[d]imidazol-2-yl)thio)-1-([1,1'-biphenyl]-4-yl)-1-(4-

fluorophenyl)ethan-1-ol (4p): 129.8 mg, 98% yield. White solid. m.p.: 187.7-188.9 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.50 (s, 1H), 7.64-7.60 (m, 8H), 7.46-7.32 (m, 5H), 7.17-7.09 (m, 4H), 6.80 (s, 1H), 4.37 (s, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 161.1 (d, *J* = 242.0 Hz), 151.4, 145.8, 142.8 (d, *J* = 3.0 Hz), 139.8, 138.7, 128.9(8), 128.0(5) (d, *J* = 8.0 Hz), 127.5, 126.7, 126.5, 126.4, 121.5, 114.7 (d, *J* = 21.0 Hz), 76.2,

43.9. ¹⁹**F NMR** (376 MHz, DMSO- d_6) δ -116.21 (s). **HRMS** (ESI) m/z Calcd for C₂₇H₂₂FN₂OS [M+H]⁺: 441.1431; Found: 441.1434.

2-((1*H***-benzo[***d***]imidazol-2-yl)thio)-1-(4-bromophenyl)-1-(***p***-tolyl)ethan-1-ol (4q): 123.6 mg, 94% yield. White solid. m.p.: 147.0-148.4 °C. ¹H NMR (400 MHz, DMSO-***d***₆) \delta 12.47 (s, 1H), 7.52-7.45 (m, 5H), 7.40 (d,** *J* **= 8.2 Hz, 2H), 7.34-7.32 (m, 1H), 7.13-7.09 (m, 4H), 6.69 (s, 1H), 4.31 (d,** *J* **= 13.0 Hz, 1H), 4.26 (d,** *J* **= 13.0 Hz, 1H), 2.25 (s, 3H). ¹³C NMR (100 MHz, DMSO-***d***₆) \delta 151.4, 146.3, 143.3(9), 143.3(3), 136.1, 135.4, 130.8, 128.7, 128.3, 125.8, 121.7, 121.3, 120.0, 117.1, 110.3, 76.2, 43.7, 20.6. HRMS (ESI) m/z Calcd for C₂₂H₂₀BrN₂OS [M+H]⁺: 439.0474; Found: 439.0474.**

2-((1*H***-benzo[***d***]imidazol-2-yl)thio)-1-(3,4-dichlorophenyl)-1-phenylethan-1ol (4r): 115.0 mg, 92% yield. White solid. m.p.: 82.4-84.5 °C. ¹H NMR (400 MHz, DMSO-***d***₆) \delta 12.50 (s, 1H), 7.79 (d,** *J* **= 1.8 Hz, 1H), 7.58-7.50 (m, 5H), 7.36-7.33 (m, 3H), 7.26-7.23 (m, 1H), 7.14-7.10 (m, 2H), 6.99 (s, 1H), 4.41 (d,** *J* **= 13.2 Hz, 1H), 4.29 (d,** *J* **= 13.2 Hz, 1H). ¹³C NMR (100 MHz, DMSO-***d***₆) \delta 151.1, 147.7, 145.9, 143.3, 135.4, 130.8, 130.2, 129.5, 128.3, 128.0, 127.2, 126.5, 125.8, 121.7, 121.3, 117.2, 110.4, 76.2, 43.3. HRMS** (ESI) m/z Calcd for C₂₁H₁₇Cl₂N₂OS [M+H]⁺: 415.0433; Found: 415.0438.

2-((1*H***-benzo[***d***]imidazol-2-yl)thio)-1-(2,4-dimethylphenyl)-1-phenylethan-1ol (4s): 107.5 mg, 96% yield. White solid. m.p.: 93.5-95.7 °C. ¹H NMR (400 MHz, DMSO-***d***₆) \delta 12.44 (s, 1H), 7.60 (d,** *J* **= 8.0 Hz, 1H), 7.51-7.48 (m, 1H), 7.35-7.26 (m, 5H), 7.21 -7.17 (m, 1H), 7.12-7.07 (m, 2H), 7.04 (d,** *J* **= 7.8 Hz, 1H), 6.88 (s, 1H), 6.34 (s, 1H), 4.33 (d,** *J* **= 12.5 Hz, 1H), 4.17 (d,** *J* **= 12.5 Hz, 1H), 2.25 (s, 3H), 1.97 (s, 3H). ¹³C NMR (100 MHz, DMSO-***d***₆) \delta 151.7, 145.9(7), 143.4, 140.6, 136.9, 136.4, 135.5, 133.0, 127.7, 126.6, 126.3, 126.1, 125.6, 121.6, 121.2, 117.1, 110.2, 76.7, 45.4, 21.2, 20.5. HRMS** (ESI) m/z Calcd for C₂₃H₂₃N₂OS [M+H]⁺: 375.1526; Found: 375.1528.

2-((1*H***-benzo[***d***]imidazol-2-yl)thio)-1-phenyl-1-(thiophen-2-yl)ethan-1-ol (4t): 89.0 mg, 84% yield. White solid. m.p.: 162.0-163.3 °C. ¹H NMR (400 MHz, DMSO-***d***₆) \delta 12.53 (s, 1H), 7.61 (d,** *J* **= 7.4 Hz, 2H), 7.43-7.30 (m, 5H), 7.25-7.21 (m, 2H), 7.15-7.10 (m, 3H), 6.96 (dd,** *J* **= 5.0, 3.6 Hz, 1H), 4.34 (d,** *J* **= 13.3 Hz, 1H), 4.29 (d,** *J* **= 13.2 Hz, 1H). ¹³C NMR (100 MHz, DMSO-***d***₆) \delta 152.7, 151.4, 145.9, 127.9(6), 127.0, 126.8, 125.6, 125.0, 123.6, 121.5, 75.7, 44.7. HRMS** (ESI) m/z Calcd for C₁₉H₁₇N₂OS₂ [M+H]⁺: 353.0777; Found: 353.0793.

2-((1*H***-benzo[***d***]imidazol-2-yl)thio)-1-(naphthalen-1-yl)-1-phenylethan-1-ol (4u): 104.2 mg, 88% yield. White solid. m.p.: 112.8-114.4 °C. ¹H NMR (400 MHz,** DMSO- d_6) δ 12.45 (s, 1H), 8.24 (d, J = 8.7 Hz, 1H), 7.94 (d, J = 7.2 Hz, 1H), 7.87 (dd, J = 11.9, 8.2 Hz, 2H), 7.56 (t, J = 7.9 Hz 1H), 7.50-7.44 (m, 3H), 7.38-7.32 (m, 2H), 7.28-7.21 (m, 3H), 7.16 (t, J = 7.3 Hz, 1H), 7.12-7.08 (m, 2H), 6.86 (s, 1H), 4.49 (d, J = 12.5 Hz, 1H), 4.34 (d, J = 12.5 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 151.5, 146.5, 143.4, 140.7, 135.4, 134.5, 130.7, 128.7, 128.5, 127.9, 127.6, 126.7, 125.8, 125.1, 124.9, 124.6, 124.3, 121.5, 121.2, 117.1, 110.2, 77.3, 45.9(5). HRMS (ESI) m/z Calcd for C₂₅H₂₁N₂OS [M+H]⁺: 397.1369; Found: 397.1368.

1-((1*H***-benzo[***d***]imidazol-2-yl)thio)-2-phenylpropan-2-ol (4v): 81.4 mg, 95% yield. White solid. m.p.: 152.7-154.1 °C. ¹H NMR (400 MHz, DMSO-***d***₆) δ 12.43 (s, 1H), 7.55-7.53 (m, 2H), 7.48 (s, 1H), 7.35-7.31 (m, 3H), 7.22 (t, J = 7.3 Hz, 1H), 7.12-7.07 (m, 2H), 5.85 (s, 1H), 3.80 (d, J = 12.9 Hz, 1H), 3.71 (d, J = 12.9 Hz, 1H), 1.59 (s, 3H). ¹³C NMR (100 MHz, DMSO-***d***₆) δ 151.5, 147.6, 143.4, 135.5, 127.9, 126.5, 125.1, 121.3, 117.1, 110.1, 72.8, 45.3, 29.2. HRMS (ESI) m/z Calcd for C₁₆H₁₇N₂OS [M+H]⁺: 285.1056; Found: 285.1054.**

2-((1*H***-benzo[***d***]imidazol-2-yl)thio)-1-cyclopropyl-1-phenylethan-1-ol (4w): 66.2 mg, 71% yield. White solid. m.p.: 63.0-65.4 °C. ¹H NMR (400 MHz, DMSO-***d***₆) \delta 12.45 (s, 1H), 7.56-7.54 (m, 2H), 7.51-7.49 (m, 1H), 7.31 (t,** *J* **= 7.8 Hz, 3H), 7.21 (t,** *J* **= 7.3 Hz, 1H), 7.12-7.08 (m, 2H), 5.77 (s, 1H), 3.93 (d,** *J* **= 13.1 Hz, 1H), 3.85 (d,** *J* **= 13.1 Hz, 1H), 1.45-1.38 (m, 1H), 0.67-0.61 (m, 1H), 0.44-0.37 (m, 1H), 0.32-0.26 (m, 1H), 0.23-0.16 (m, 1H). ¹³C NMR (100 MHz, DMSO-***d***₆) \delta 151.8, 146.5, 143.2, 135.4, 127.7, 126.5, 125.6, 121.6, 121.2, 117.0, 110.2, 73.1, 44.5, 21.5, 1.6, 0.2. HRMS (ESI) m/z Calcd for C₁₈H₁₇N₂OS [M-H]⁻: 309.1067; Found: 309.1069.**

1-phenyl-2-(*p*-tolylthio)ethan-1-ol (5a)^[3]: 52.6 mg, 72% yield. Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.23 (m, 7H), 7.12 (d, *J* = 7.9 Hz, 2H), 4.66 (dd, J = 9.5, 3.3 Hz, 1H), 3.25 (dd, *J* = 13.8, 3.4 Hz, 1H), 3.02 (dd, *J* = 13.8, 9.6 Hz, 1H), 2.95 (s, 1H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 142.3, 137.2, 131.1, 131.1, 130.1, 128.6, 128.0, 126.0, 71.6, 44.9, 21.2.

1-(*p***-tolyl)-2-(***p***-tolylthio)ethan-1-ol (5b)^[4]: 35.2 mg, 45% yield. Light yellow oil. ¹H NMR (400 MHz, CDCl₃) \delta 7.32 (d, J = 7.7 Hz, 2H), 7.21 (d, J = 7.7 Hz, 2H), 7.12 (t, J = 7.8 Hz, 4H), 4.64 (dd, J = 9.3, 2.8 Hz, 1H), 3.24 (dd, J = 13.7, 2.9 Hz, 1H), 3.02 (dd, J = 13.5, 9.7 Hz, 1H), 2.87 (s, 1H), 2.33 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) \delta 139.4, 137.7, 137.1, 131.2, 131.1, 130.0, 129.3, 125.9, 71.5, 44.8, 21.3, 21.2.**

1-(4-chlorophenyl)-2-(*p***-tolylthio)ethan-1-ol (5c)**^[5]: 40.7 mg, 49% yield. Light yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.33-7.23 (m, 6H), 7.12 (d, *J* = 7.4 Hz, 2H), 4.62 (d, *J* = 8.8 Hz, 1H), 3.21 (dd, *J* = 13.8, 1.1 Hz, 1H), 3.00-2.93 (m, 2H), 2.33 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 140.8, 137.5, 133.7, 131.4, 130.7, 130.1, 128.8, 127.4, 70.9, 45.0, 21.2.

1,1-diphenyl-2-(*p***-tolylthio)ethan-1-ol (5d)**^[4]: 40.7 mg, 49% yield. Light yellow solid, mp 68.7-70.4 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.43 (d, *J* = 8.1 Hz, 4H), 7.30-

7.25 (m, 8H), 7.03 (d, *J* = 7.7 Hz, 2H), 3.81 (s, 2H), 3.60 (s, 1H), 2.27 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 145.4, 136.9, 132.9, 131.0, 129.9, 128.3, 127.4, 126.3, 77.8, 49.8, 21.1.

2-((4-chlorophenyl)thio)-1-phenylethan-1-ol (5e)^[3]: 60.8 mg, 77% yield. Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.24 (m, 9H), 4.70 (dd, *J* = 9.0, 3.5 Hz, 1H), 3.25 (dd, *J* = 13.7, 3.7 Hz, 1H), 3.09 (dd, *J* = 13.7, 9.2 Hz, 1H), 2.83 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 142.1, 133.8, 132.9, 131.5, 129.3, 128.7, 128.2, 125.9, 71.9, 44.1.

2-((3,5-dimethylphenyl)thio)-1-phenylethan-1-ol (5f)^[3]: 58.5 mg, 75% yield. Light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.26 (m, 5H), 7.02 (s, 2H), 6.85 (s, 1H), 4.70 (dd, J = 9.3, 2.9 Hz, 1H), 3.28 (dd, J = 13.7, 2.9 Hz, 1H), 3.04 (dd, J = 13.6, 9.6 Hz, 1H), 2.95 (s, 1H), 2.28 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 142.4, 138.8, 134.4, 128.8, 128.6, 128.0, 126.0, 71.7, 44.1, 21.3.

6. References

[1] (a) T. Wang, Y. Hu and S. Zhang, Org. Biomol. Chem., 2010, 8, 2312; (b) Z. Cheng,
W. Jin and C. Liu, Org. Chem. Front., 2019, 6, 841.

[2] J. Li, J. Chen, W. Jiao, G. Wang, Y. Li, X. Cheng and G. Li, *J. Org. Chem.*, 2016, 81, 9992.

[3] J. Shi, X.-W. Gao, Q.-X. Tong and J.-J. Zhong, J. Org. Chem., 2021, 86, 12922.

[4] H. Xi, B. Deng, Z. Zong, S. Lu and Z. Li, Org. Lett., 2015, 17, 1180.

[5] B. Zhang, T. Liu, Y. Bian, T. Lu and J. Feng, ACS Sustainable Chem. Eng., 2018, 6, 2651.

7. Copies of NMR spectra

¹H NMR of product 3b in DMSO-*d*₆ (400 MHz)

¹⁹F NMR of product 3b in DMSO-*d*₆ (376 MHz)

¹³C NMR of product 3e in DMSO-*d*₆ (100 MHz) 127.87 126.52 125.93 45.10 45.10 39.94 39.73 39.73 39.31 39.31 39.10 -76.79 00 190 180 150 140 130 120 110 100 90 f1 (ppm) 170 160 80 60 20 70 50 40 30 10 0 -1 ¹H NMR of product 3f in DMSO-*d*₆ (400 MHz) -12.4610 2.5060 2.5014 2.4968 2.4922 2.4922 2.4876 -0.0000 5551 4592 3340 .2182 4805 4769 4721 4515 3795 3199 .2336 2113 2082 8759 533 531 5258 357 312 239 236 189 7 2113 7 2082 7 2082 7 2052 7 2052 7 1945 7 1945 7 1852 7 1852 7 1746 7 1716 7 1716 7 1716 4473 3199 3163 3121 2981 2182 1515 3579 2822 2781 2397 334 N нс 7.65 7.45 7.35 f1 (ppm) 7.55 7.25 7.15 F-96.0 2.04 3.19 3.19 2.00-13.5 12.5 11.5 7.5 6.5 f1 (ppm) 0.5 -0.5 10.5 9.5 8.5 5.5 4.5 3.5 2.5 1.5

¹³C NMR of product 3f in DMSO-d₆ (100 MHz)

¹³C NMR of product 3g in DMSO-*d*₆ (100 MHz)

S34

S35

¹³C NMR of product 3j in DMSO-d₆ (100 MHz)

S38

S39

¹³C NMR of product 4c in DMSO-d₆ (100 MHz)

¹³C NMR of product 4d in DMSO-d₆ (100 MHz)

¹³C NMR of product 4e in DMSO-d₆ (100 MHz)

S43

¹³C NMR of product 4g in DMSO-*d*₆ (100 MHz)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

¹⁹F NMR of product 4h in DMSO-*d*₆ (376 MHz)

¹³C NMR of product 4j in DMSO-d₆ (100 MHz)

¹³C NMR of product 4k in DMSO-*d*₆ (100 MHz)

¹³C NMR of product 4l in DMSO-d₆ (100 MHz)

¹³C NMR of product 4m in DMSO-*d*₆ (100 MHz)

¹³C NMR of product 4n in DMSO-d₆ (100 MHz)

¹H NMR of product 40 in DMSO-*d*₆ (400 MHz)

¹⁹F NMR of product 4p in DMSO-*d*₆ (376 MHz)

¹³C NMR of product 4q in DMSO-d₆ (100 MHz)

¹³C NMR of product 4r in DMSO-d₆ (100 MHz)

¹³C NMR of product 4s in DMSO-*d*₆ (100 MHz)

¹³C NMR of product 4t in DMSO-d₆ (100 MHz)

S60

¹³C NMR of product 4v in DMSO-d₆ (100 MHz)

¹³C NMR of product 4w in DMSO-d₆ (100 MHz)

¹³C NMR of product 5a in CDCl₃ (100 MHz)

¹³C NMR of product 5b in CDCl₃ (100 MHz)

¹³C NMR of product 5c in CDCl₃ (100 MHz)

¹³C NMR of product 5d in CDCl₃ (100 MHz)

¹³C NMR of product 5e in CDCl₃ (100 MHz)

¹³C NMR of product 5f in CDCl₃ (100 MHz)

8. X-Ray crystallography data of 3a and 3c

The suitable crystals were selected on a **XtaLAB Synergy**, **Dualflex**, **HyPix** diffractometer. The crystals were kept at 100.03(10) K during data collection. Using Olex2^[1], the structures were solved with the ShelXT^[2] structure solution program using Intrinsic Phasing and refined with the ShelXL^[3] refinement package using Least Squares minimisation.

Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H.
 (2009), J. Appl. Cryst. 42, 339-341.

[2] Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.

[3] Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Single-crystals suitable for X-ray diffraction analysis were grown from the recrystallization in chloroform and *n*-hexane (1/1, v/v) at 25 °C. Thermal ellipsoids of the crystal structures of **3a** and **3c** was set at 50%.

CCDC 2080027 $C_{21}H_{18}N_2OS$ 11.9441(16) 12.2012(17) 13.4500(19) 76.259(2) 72.322(2) 79.906(2) 1802.8(4) $0.28 \times 0.26 \times 0.24$ MoK α ($\lambda = 0.71073$)

- 2Θ range for data collection/° Index ranges Reflections collected Independent reflections Data/restraints/parameters Goodness-of-fit on F² Final R indexes [I>=2σ (I)] Final R indexes [all data] Largest diff. peak/hole / e Å⁻³
- $\begin{array}{c} 6.02 \text{ to } 55.316\\ -14 \leq h \leq 15, -13 \leq k \leq 15, -17 \leq l \leq 17\\ 11040\\ 7932 \; [R_{int} = 0.0155, \, R_{sigma} = 0.0335]\\ 7932/0/467\\ 1.024\\ R_1 = 0.0417, \, wR_2 = 0.1007\\ R_1 = 0.0628, \, wR_2 = 0.1137\\ 0.22/-0.28\end{array}$

8.2 X-Ray crystallography data of 3c (CCDC 2080030)

Identification code	CCDC 2080030
Empirical formula	$C_{21}H_{16}Cl_2N_2OS$
Formula weight	415.33
Temperature/K	296.15
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	24.764(5)
b/Å	12.538(3)
c/Å	13.430(3)
$\alpha/^{\circ}$	90
β/°	91.148(3)
γ/°	90

S70

Volume/Å³ Ζ $\rho_{calc}g/cm^3$ μ/mm^{-1} F(000) Crystal size/mm³ Radiation 2Θ range for data collection/° Index ranges Reflections collected Independent reflections Data/restraints/parameters Goodness-of-fit on F² Final R indexes $[I \ge 2\sigma(I)]$ Final R indexes [all data] Largest diff. peak/hole / e Å-3

4168.9(14) 2 1.358 0.426 1762.0 $? \times ? \times ?$ MoK α ($\lambda = 0.71073$) 4.624 to 55.502 $-32 \le h \le 26, -15 \le k \le 15, -17 \le l \le$ 17 25147 9475 [$R_{int} = 0.0313$, $R_{sigma} = 0.0398$] 9475/3/517 1.038 $R_1 = 0.0494, wR_2 = 0.1375$ $R_1 = 0.0807, wR_2 = 0.1564$ 0.67/-0.34