Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2022

Solar H₂ production systems: Current status and prospective application Noemi Pirrone^a, Federico Bella^b, Simelys Hernández^{*a}

^aCREST group, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy; ^bElectrochemistry Group, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy

*simelys.hernandez@polito.it

Supporting Information

Table S1: State-of-the art photoanodes materials.	2
Table S2 State-of-the-art photocathodes materials	2
Table S3: 2019-2021 state-of-the-art PEC devices.	3
Table S4: 2019-2021 state-of-the-art PV-EC devices.	4
Table S5: Anodic electrocatalysts overpotentials towards oxygen evolution reaction at 10 mA cm-2 in alkaline media.	5
Table S6: Cathodic electrocatalysts overpotentials towards hydrogen evolution reaction at -10 mA cm-2 in alkaline media.	5
References	6

Photoanode		J _{ph} , mA cm ⁻² at 1,23 V _{RHE}	Ref.
NiOOH/FeOOH/BiVO ₄	BiVO ₄ based	5	Lee <i>et al.</i> ²⁷ (2018)
BiVO ₄ -NSCN/PANI@CoPi	BiVO ₄ based	4,46	Reddy et al. ²⁸ (2020)
NiF ₂ /BiVO ₄	BiVO ₄ based	2,8	Zhao <i>et al.</i> ²⁹ (2021)
BiVO ₄ /WO ₃ NWs	BiVO ₄ based	3,1	Rao <i>et al.</i> ³⁰ (2014)
NiFeOOH/Mo:BiVO ₄	BiVO ₄ based	4,5	Shim <i>et al.</i> ³¹ (2022)
FeOOH/TiO ₂ /Ti:Fe2O ₃	Fe ₂ O ₃ based	3,1	Luo <i>et al.</i> ³² (2017)
Co-Pi/Fe ₂ O ₃	Fe ₂ O ₃ based	4,32	Kim <i>et al.</i> ³³ (2013)
CoAl-LLDHs/Fe ₂ O ₃	Fe ₂ O ₃ based	4,3	Chong <i>et al.</i> ³⁴ (2019)
WO3/CDS/NiOOH/Co-Pi	WO ₃ base	2,59	Li et al. ³⁵ (2019)
Ni(OH) ₂ /FeOOH/TiO ₂ /TaN ₅	TaN based	12,1	Liu et al. ³⁶ (2016)
Al spiked Ni/SiO ₂ /Si	PV grade	32	Lee <i>et al.</i> ³⁷ (2021)
NiO _x /CoO _x /SiO _x /n-Si	PV grade	27,7	Zhou <i>et al.</i> ³⁸ (2015)
CH ₃ NH ₃ PbI ₃ /Spiro-IMeTAD/Au	PSC based	16	Nam <i>et al.</i> ³⁹ (2018)
(5-AVA) _x (MA) _{1-x} PbI ₃	PSC based	12,4	Tao <i>et al.</i> ⁴⁰ (2019)
ITO/SnO ₂ /PSC/Spiro-OMeTAD/Au/Gs/Ni	PSC based	17,4	Wang <i>et al</i> . ⁴¹ (2021)

Table S1: State-of-the art photoanodes materials.

Table S2 State-of-the-art photocathodes materials

Photocathode		J _{ph} , mA cm ⁻² at 0 V _{RHE}	Ref.
pn ⁺ -Si/Ta ₂ O ₅ /Pt	PV grade	-34,7	Wang et al.42 (2019)
Pt-CdS/CIGS	PV grade	-27	Kumagai <i>et al.</i> ⁴³ (2015)
Ti-Pt/SrTiO ₃ /p-Si	PV grade	-35	Ji et al.44 (2015)
CH ₃ NH ₃ PbI ₃ /NiO/PCBM/Ti/Pt	PSC based	-18	Zhang <i>et al.</i> ⁴⁵ (2018)
CsMAFAPbIBr	PSC based	-10	Kim et al.46 (2019)
MoS ₂ /Ti foil/OHP	PSC based	-20,6	Choi et al.47 (2021)
RuO _x /TiO _x /Cu ₂ O	Cu ₂ O based	-7,8	Luo <i>et al</i> . ⁴⁸ (2016)
Cu ₂ O/CuO/C	Cu ₂ O based	-7,5	Kunturu et al.49 (2019)
Cu-doped NiO _x /Sb ₂ Se ₃	Sb ₂ Se ₃ based	-17,5	Lee <i>et al.</i> ⁵⁰ (2019)

OEP	НЕР	Active area, cm ²	η _{sth} , %	Durability, h	Electrolyte	Ref.
NiFeO _x /H,Mo:BiVO ₄ /FTO	Pt/TiO ₂ /CdS/Sb ₂ Se ₃ /Au/FTO	0,32	1,5	10	0,5 M phosphate buffer+0,01 M V ₂ O ₅ , pH 7	Yang <i>et al.</i> ¹⁰ (2020)
n-Se/BiVO ₄	p-Cr ₂ O ₃ /CuO:Ni	1	0,05	-	0,5 Na ₂ SO ₄ , pH 7	Mohd Nasir <i>et al.</i> ¹¹ (2020)
WO ₃ -ZIF-67	BiVO ₄ -BP	2	1,9	4	0,5 Na ₂ SO ₄ , pH 7	Wang <i>et al.</i> ¹² (2020)
BiVO ₄ /NiFeO _x	CuOx/BHJ/TiO ₂ /Pt	4	1,1	0,5	0,1 M K ₃ PO ₄ , pH 7	Shi et al. ¹³ (2020)
PSC/FeNiOOH/Ni	PSC/CoP/Sn	1	8,54	3	0,5 M NaOH	Chen et al. ¹⁴ (2021)
Photoelectrode	PV				-	.
HIT/ALD-TiO ₂ /Ti/Pt (titanium anode)	2 a-Si HIT cell	2,85	12,2	120	1 M H ₂ SO ₄	Tan <i>et al.</i> ¹⁵ (2019)
p ⁺ nn ⁺ -Si/Ti/Pt (DSA anode)	Perovskite (1,75 eV)	0,6	17,6	72	1 M H ₂ SO ₄	Karuturi <i>et al</i> . ¹⁶ (2020)
BiVO ₄ /CoPi	Printable triple-mesoscopic perovskite solar cells	0,6	3,1	6	0,1 M PBS, pH 7	Zhang <i>et al</i> . ¹⁷ (2020)
2 x H,W:BiVO ₄ /CoPi (dual)	2 x SHJ Si	0,244	5,5	7	0,5 M Na ₂ SO ₃ /0,1 M KPi, pH 7	Ahmet <i>et al.</i> ¹⁸ (2019)
Co(OH) ₂ /BiVO ₄	Carbon-based perovskite	1	4,6	10	1 M borate buffer, ph 9,1	Li et al. ¹⁹ (2020)
BGLC (NiMo cathode)	c-Si	4	6,6	71	1 M NaOH	Zhu <i>et al</i> . ²⁰ (2021)
CIGS/ZnS/CdS (IrO _x anode)	Perovskite	0,2	9	6,5	c:0,5M Kpi/a: 1M KOH	Koo <i>et al</i> . ²¹ (2020)
NiFeO _x @Ti:SiFeO ₃ (Pt cathode)	Perovskite	0,44	4,49	>8	1M NaOH	Park et al. ²² (2020)
PE buried						
CoP-CoP	2 x glass/FTO/TiO ₂ /perovskite/carbon	0,18	6,7	-	1 M KOH	Liang <i>et al.</i> ²³ (2020)
Ti-Ti	GaInP/GaAs/Ge	4	17,12	2	water	Tembhurne <i>et al.</i> ²⁴ (2019)
Ir-Pt	III-V triple junction	1	14	1000	Vapour	Kristler <i>et al.</i> ²⁵ (2020)
Pt	3S-BBJ-Pt	24	15,62	40	1 M H ₂ SO ₄	Fu et al. ²⁶ (2020)

Table S3: 2019-2021 state-of-the-art PEC devices.

Elecrolyzer (anode/cathode)	PV	Active area, cm ²	η _{sth} , %	Durability, h	Electrolyte	Reference
MEA electrolyzer, Ni-Pt coating on Ti mesh	GaInP/GaInAs/Ge 3jn	36	18,3	100	5 M KOH	Khan <i>et al.</i> ¹ (2020)
NiFe (oxy)-hydroxide- Electrodeposited Ni ₄ Mo films	Perovskite/Si tandem	0,1875	17,52	24	1 M NaOH, pH 14	Park <i>et al.</i> ² (2019)
Co&Fe-WO-Pt coated Ni	c-Si solar cell	4,73	16,9	50	1 M KOH	Chen <i>et al.</i> ³ (2019)
NiFe LDH-Pt/C	Perovskite organic tandem solar cell	0,13	12,3	-	1 M KOH	Li <i>et al.</i> ⁴ (2020)
NiFe-LDH -CC/TiO ₂ /Pt	Perovskite/Silicon tandem cell	1,42	12,3	100	1 M KOH	Gao <i>et al.</i> ⁵ (2019)
NiFe/NF-NiMo/NF	Perovskite/Silicon tandem cell	1	20	15	1 M KOH	Wang <i>et al.</i> ⁶ (2021)
NiCoFe-NiMo ₄ /MnO _{3-X}	Perovskite/Si	0,5	21,32	8	1M KOH	Pan <i>et al.</i> ⁷ (2021)
Ni foil-Pt/Ti mesh	(3jn) InGaP/InGaAs/Ge (41 suns)	12,25	28	-	5М КОН	Khan <i>et al.</i> ⁸ (2021)
Ru(O)(tda)(py) ₂ -Ptmesh	PSC	0,18	21,2	>15	Phosphate buffer, pH 7	Shi <i>et al.</i> ⁹ (2020)

Table S4: 2019-2021 state-of-the-art PV-EC devices.

Anodic electrocatalyst	Overpotential (mV) at 10 mA cm ⁻²	Ref.
NiFe LDH	200	Gao <i>et al.</i> ⁵ (2019)
NiFe (oxy)hydroxide	250	Park <i>et al.</i> ² (2019)
Ni-Fe-P	192	Zhang et al. ⁵¹ (2020)
Ni@Ru/CNS-x	356	Wu <i>et al.</i> ⁵² (2019)
Ni ₃ S ₄	257	Wan <i>et al.</i> ⁵³ (2019)
Ir-doped NiCo	192	Fan et al. ⁵⁴ (2020)
Ni ₂ P/rGO	221	Luo et al.55 (2021)
Co&Fe-WO/NF	226	Chen <i>et al.</i> ³ (2019)
CoP/FTO	188	Jang et al. ²³ (2020)
Mo ₂ CT _x MFs	180	Kou <i>et al</i> . ⁵⁶ (2019)
RuO ₂ /CeO ₂	350	Galani et al. ⁵⁷ (2020)
BP/Au	160	Qiao <i>et al.</i> ⁵⁸ (2020)
Ir	380	McCroy <i>et al.</i> ⁵⁹ (2015)
Ru	366	McCroy <i>et al.</i> ⁵⁹ (2015)

Table S5: Anodic electrocatalysts overpotentials towards oxygen evolution reaction at 10 mA cm-2 in alkaline media.

Table S6: Cathodic electrocatalysts overpotentials towards hydrogen evolution reaction at -10 mA cm-2 in alkaline media.

Cathodic electrocatalyst	Overpotential (mV) at -10 mA cm ⁻²	Ref.
Cc/TiC/Pt	-37	Gao <i>et al.</i> ⁵ (2019)
Pt/Ni	-200	Chen <i>et al.</i> ³ (2019)
Pt/C	-56,3	Chen et al. ⁶⁰ (2019)
PtCoRu	-22	Chen et al. ⁶¹ (2020)
Ni ₄ Mo	-100	Park <i>et al.</i> ² (2019)
Mo ₂ CT _x MFs	-154	Kou <i>et al</i> . ⁵⁶ (2019)
Ni@Ru/CNS-x	-20,1	Wu et al. ⁵² (2019)
MoS _x @NiO	-406	Ibupoto et al. ⁶² (2019)
CoP@NPC	-86	Chen et al. ⁶⁰ (2019)
CoP/FTO	-188	Jang et al. ²³ (2020)
Ir-doped NiCo	-21	Fan et al. ⁵⁴ (2020)

References

- 1 M. A. Khan, I. Al-Shankiti, A. Ziani, N. Wehbe and H. Idriss, *Angew. Chemie Int. Ed.*, 2020, **59**, 14802–14808.
- 2 H. Park, I. J. Park, M. G. Lee, K. C. Kwon, S. P. Hong, D. H. Kim, S. A. Lee, T. H. Lee, C. Kim, C. W. Moon, D. Y. Son, G. H. Jung, H. S. Yang, J. R. Lee, J. Lee, N. G. Park, S. Y. Kim, J. Y. Kim and H. W. Jang, *ACS Appl. Mater. Interfaces*, 2019, **11**, 33835–33843.
- 3 H. Chen, L. Song, S. Ouyang, J. Wang, J. Lv and J. Ye, *Adv. Sci.*, 2019, **6**, 1900465.
- 4 Z. Li, S. Wu, J. Zhang, K. C. Lee, H. Lei, F. Lin, Z. Wang, Z. Zhu and A. K. Y. Jen, *Adv. Energy Mater.*, 2020, **10**, 2000361.
- 5 J. Gao, F. Sahli, C. Liu, D. Ren, X. Guo, J. Werner, Q. Jeangros, S. M. Zakeeruddin, C. Ballif, M. Grätzel and J. Luo, *Joule*, 2019, **3**, 2930–2941.
- 6 Y. Wang, A. Sharma, T. Duong, H. Arandiyan, T. Zhao, D. Zhang, Z. Su, M. Garbrecht, F. J. Beck, S. Karuturi, C. Zhao and K. Catchpole, *Adv. Energy Mater.*, 2021, **11**, 2101053.
- 7 S. Pan, R. Li, Q. Zhang, C. Cui, M. Wang, B. Shi, P. Wang, C. Zhang, B. Zhang, Y. Zhao and X. Zhang, *J. Mater. Chem. A*, 2021, **9**, 14085–14092.
- 8 M. A. Khan, I. Al-Shankiti, A. Ziani and H. Idriss, Sustain. Energy Fuels, 2021, 5, 1085–1094.
- 9 Y. Shi, T. Y. Hsieh, M. A. Hoque, W. Cambarau, S. Narbey, C. Gimbert-Surinãch, E. Palomares, M. Lanza and A. Llobet, *ACS Appl. Mater. Interfaces*, 2020, **12**, 55856–55864.
- 10 W. Yang, J. H. Kim, O. S. Hutter, L. J. Phillips, J. Tan, J. Park, H. Lee, J. D. Major, J. S. Lee and J. Moon, *Nat. Commun.*, DOI:10.1038/s41467-020-14704-3.
- 11 S. N. F. Mohd Nasir and M. A. Mat-Teridi, J. Sol-Gel Sci. Technol., 2020, 93, 1–5.
- 12 Y. Wang, H. Shi, K. Cui, L. Zhang, S. Ge and J. Yu, *Appl. Catal. B Environ.*, 2020, 275, 119094.
- 13 W. Shi, D. Li, W. Fan, J. Ma, C. Li, W. Yu, J. Shi and C. Li, Adv. Funct. Mater., 2020, 30, 2003399.
- H. Chen, M. Zhang, T. Tran-Phu, R. Bo, L. Shi, I. Di Bernardo, J. Bing, J. Pan, S. Singh, J. Lipton-Duffin, T. Wu,
 R. Amal, S. Huang, A. W. Y. Ho-Baillie and A. Tricoli, *Adv. Funct. Mater.*, 2021, **31**, 2008245.
- 15 C. S. Tan, K. W. Kemp, M. R. Braun, A. C. Meng, W. Tan, C. E. D. Chidsey, W. Ma, F. Moghadam and P. C. McIntyre, *Sustain. Energy Fuels*, 2019, 3, 1490–1500.
- 16 S. K. Karuturi, H. Shen, A. Sharma, F. J. Beck, P. Varadhan, T. Duong, P. R. Narangari, D. Zhang, Y. Wan, J.-H. He, H. H. Tan, C. Jagadish and K. Catchpole, *Adv. Energy Mater.*, 2020, 10, 2000772.
- 17 S. Zhang, L. Shen, T. Ye, K. Kong, H. Ye, H. Ding, Y. Hu and J. Hua, *Energy and Fuels*, 2020, **34**, 5016–5023.
- 18 I. Y. Ahmet, Y. Ma, J. W. Jang, T. Henschel, B. Stannowski, T. Lopes, A. Vilanova, A. Mendes, F. F. Abdi and R. Van De Krol, Sustain. Energy Fuels, 2019, 3, 2366–2379.
- 19 X. Li, M. Jia, Y. Lu, N. Li, Y. Z. Zheng, X. Tao and M. Huang, *Electrochim. Acta*, 2020, **330**, 135183.
- 20 J. Zhu, J. B. Gumundsdóttir, R. Strandbakke, K. G. Both, T. Aarholt, P. A. Carvalho, M. H. Sørby, I. J. T. Jensen, M. N. Guzik, T. Norby, H. Haug and A. Chatzitakis, ACS Appl. Mater. Interfaces, 2021, 13, 20313–20325.
- 21 B. Koo, D. Kim, P. Boonmongkolras, S. R. Pae, S. Byun, J. Kim, J. H. Lee, D. H. Kim, S. Kim, B. T. Ahn, S. W. Nam and B. Shin, *ACS Appl. Energy Mater.*, 2020, **3**, 2296–2303.
- 22 J. Park, K. Y. Yoon, T. Kim, H. Jang, M. J. Kwak, J. Y. Kim and J. H. Jang, *Nano Energy*, 2020, 76, 105089.
- 23 J. Liang, X. Han, Y. Qiu, Q. Fang, B. Zhang, W. Wang, J. Zhang, P. M. Ajayan and J. Lou, ACS Nano, 2020, 14, 5426–5434.
- 24 S. Tembhurne, F. Nandjou and S. Haussener, *Nat. Energy*, 2019, **4**, 399–407.
- 25 T. A. Kistler, M. Y. Um and P. Agbo, J. Electrochem. Soc., 2020, 167, 066502.
- 26 H. C. Fu, P. Varadhan, C. H. Lin and J. H. He, Nat. Commun., , DOI:10.1038/s41467-020-17660-0.
- 27 D. K. Lee and K. S. Choi, *Nat. Energy*, 2018, **3**, 53–60.
- 28 D. A. Reddy, Y. Kim, H. S. Shim, K. A. J. Reddy, M. Gopannagari, D. Praveen Kumar, J. K. Song and T. K. Kim, ACS Appl. Energy Mater., 2020, **3**, 4474–4483.
- 29 Z. Zhao, K. Chen, J. Huang, L. Wang, H. She and Q. Wang, Front. Energy, 2021, 15, 760–771.
- 30 P. M. Rao, L. Cai, C. Liu, I. S. Cho, C. H. Lee, J. M. Weisse, P. Yang and X. Zheng, *Nano Lett.*, 2014, 14, 1099– 1105.
- 31 S. G. Shim, J. Tan, H. Lee, J. Park, J. Yun, Y. S. Park, K. Kim, J. Lee and J. Moon, *Chem. Eng. J.*, 2022, **430**, 133061.
- 32 Z. Luo, T. Wang, J. Zhang, C. Li, H. Li and J. Gong, Angew. Chemie Int. Ed., 2017, 56, 12878–12882.
- 33 J. Y. Kim, G. Magesh, D. H. Youn, J. W. Jang, J. Kubota, K. Domen and J. S. Lee, *Sci. Rep.*, , DOI:10.1038/srep02681.
- 34 R. Chong, G. Wang, Y. Du, Y. Jia, X. Wang, C. Li, Z. Chang and L. Zhang, *Chem. Eng. J.*, 2019, 366, 523–530.
- 35 Y. Li, Z. Liu, J. Zhang, Z. Guo, Y. Xin and L. Zhao, J. Alloys Compd., 2019, 790, 493–501.
- 36 G. Liu, S. Ye, P. Yan, F. Xiong, P. Fu, Z. Wang, Z. Chen, J. Shi and C. Li, *Energy Environ. Sci.*, 2016, 9, 1327–1334.
- 37 S. Lee, L. Ji, A. C. De Palma and E. T. Yu, Nat. Commun., , DOI:10.1038/s41467-021-24229-y.
- 38 X. Zhou, R. Liu, K. Sun, D. Friedrich, M. T. McDowell, F. Yang, S. T. Omelchenko, F. H. Saadi, A. C. Nielander, S. Yalamanchili, K. M. Papadantonakis, B. S. Brunschwig and N. S. Lewis, *Energy Environ. Sci.*, 2015, 8, 2644–

2649.

- 39 S. Nam, C. T. K. Mai and I. Oh, ACS Appl. Mater. Interfaces, 2018, 10, 14659–14664.
- 40 R. Tao, Z. Sun, F. Li, W. Fang and L. Xu, ACS Appl. Energy Mater., 2019, 2, 1969–1976.
- 41 M. Wang, Y. Li, X. Cui, Q. Zhang, S. Pan, S. Mazumdar, Y. Zhao and X. Zhang, ACS Appl. Energy Mater., 2021, 4, 7526–7534.
- 42 T. Wang, S. Liu, H. Li, C. Li, Z. Luo and J. Gong, Ind. Eng. Chem. Res., 2019, 58, 5510–5515.
- 43 H. Kumagai, T. Minegishi, N. Sato, T. Yamada, J. Kubota and K. Domen, J. Mater. Chem. A, 2015, 3, 8300–8307.
- 44 L. Ji, M. D. Mcdaniel, S. Wang, A. B. Posadas, X. Li, H. Huang, J. C. Lee, A. A. Demkov, A. J. Bard, J. G. Ekerdt and E. T. Yu, *Nat. Nanotechnol.*, 2015, **10**, 84–90.
- 45 H. Zhang, Z. Yang, W. Yu, H. Wang, W. Ma, X. Zong and C. Li, Adv. Energy Mater., 2018, 8, 1800795.
- 46 I. S. Kim, M. J. Pellin and A. B. F. Martinson, *ACS Energy Lett.*, 2019, **4**, 293–298.
- 47 H. Choi, S. Seo, J. H. Kim, J. H. Lee, S. Kim, G. Piao, H. Park, K. Lee and S. Lee, *J. Mater. Chem. A*, 2021, 9, 22291–22300.
- 48 J. Luo, L. Steier, M. K. Son, M. Schreier, M. T. Mayer and M. Grätzel, *Nano Lett.*, 2016, 16, 1848–1857.
- 49 P. P. Kunturu and J. Huskens, *ACS Appl. Energy Mater.*, 2019, **2**, 7850–7860.
- 50 H. Lee, W. Yang, J. Tan, Y. Oh, J. Park and J. Moon, ACS Energy Lett., 2019, 4, 995–1003.
- 51 X. Zhang, N. Chen, Y. Wang, G. Wu and X. Du, Int. J. Hydrogen Energy, 2020, 45, 22921–22928.
- 52 W. Wu, Y. Wu, D. Zheng, K. Wang and Z. Tang, *Electrochim. Acta*, 2019, **320**, 134568.
- 53 K. Wan, J. Luo, C. Zhou, T. Zhang, J. Arbiol, X. Lu, B. W. Mao, X. Zhang and J. Fransaer, *Adv. Funct. Mater.*, 2019, **29**, 1900315.
- 54 R. Fan, Q. Mu, Z. Wei, Y. Peng and M. Shen, J. Mater. Chem. A, 2020, 8, 9871–9881.
- 55 S. Luo, R. Wang, P. Hei, L. Gao, J. Yang and T. Jiao, *Colloids Surfaces A Physicochem. Eng. Asp.*, 2021, **612**, 125992.
- 56 Z. Kou, L. Zhang, Y. Ma, X. Liu, W. Zang, J. Zhang, S. Huang, Y. Du, A. K. Cheetham and J. Wang, *Appl. Catal. B Environ.*, 2019, **243**, 678–685.
- 57 S. M. Galani, A. Mondal, D. N. Srivastava and A. B. Panda, Int. J. Hydrogen Energy, 2020, 45, 18635–18644.
- 58 H. Qiao, H. Liu, Z. Huang, Q. Ma, S. Luo, J. Li, Y. Liu, J. Zhong and X. Qi, *Adv. Energy Mater.*, 2020, 10, 2002424.
- 59 C. C. L. McCrory, S. Jung, I. M. Ferrer, S. M. Chatman, J. C. Peters and T. F. Jaramillo, J. Am. Chem. Soc., 2015, 137, 4347–4357.
- 60 Z. Chen, H. Jia, J. Yuan, X. Liu, C. Fang, Y. Fan, C. Cao and Z. Chen, *Int. J. Hydrogen Energy*, 2019, **44**, 24342–24352.
- 61 H. Y. Chen, H. J. Niu, X. Ma, J. J. Feng, X. Weng, H. Huang and A. J. Wang, *J. Colloid Interface Sci.*, 2020, **561**, 372–378.
- 62 Z. H. Ibupoto, A. Tahira, P. Y. Tang, X. Liu, J. R. Morante, M. Fahlman, J. Arbiol, M. Vagin and A. Vomiero, *Adv. Funct. Mater.*, 2019, **29**, 1807562.