Efficient pretreatment using dimethyl isosorbide as a

biobased solvent for potential complete biomass valorization

Shuang Yang,^{a,b,c} Xianpeng Yang,^{b,c} Xianzhi Meng^d and Lei Wang*b,c

^a College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China

^b Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China

^c Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China

^d Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA

1. Hansen solubility of cosolvents

Hansen solubility parameters (HSP) have been successfully used as a decision-making tool to select solvents for extraction purposes.¹ Hansen solubility parameters of DMI/H₂O mixture were calculated to clarify the solvent power dissociating the lignin. Solubility parameters (δ) indicates the degree of dispersion forces, permanent dipole–permanent dipole forces, and hydrogen bonding hold to molecules of the liquid. It can be calculated as follows:²

$$\delta^2 = \delta_D^2 + \delta_P^2 + \delta_H^2 \tag{1}$$

$$\delta_{mixture} = \sum_{i=1}^{n} \delta_i V_i \tag{2}$$

where δ_D , δ_P and δ_H are the dispersion force parameter, polar force parameter, and hydrogen force parameter, respectively. $\delta_{mixture}$ is the solubility parameter of DMI and H₂O cosolvent with different ratio. δ_i and V_i are the solubility parameter and volume ratio of a solvent that is a part (DMI or H₂O) of the mixture, respectively.

The ability of DMI/H_2O cosolvent to dissolve lignin, RED (relative energy difference), can be predicted by the following equation:

$$(R_a)^2 = 4 \cdot (\delta_{D2} - \delta_{D1})^2 + (\delta_{P2} - \delta_{P1})^2 + (\delta_{H2} - \delta_{H1})^2$$
(3)
$$RED = R_a/R_0$$
(4)

where R_0 is a constant related to lignin ($R_0 = 13.7$).³ Ra is defined by equation 3. "2" and "1" refer to the cosolvent and lignin ($\delta_{Dl} = 21.9$ MPa, $\delta_{Pl} = 14.1$ MPa, and $\delta_{Hl} = 16.9$ MPa), respectively. According to Ribeiro's research, 30% lignin solubility threshold is more accurate.⁴ Hansen solubility parameters of DMI/H₂O at various ratios were show as table S2.

Based on Hansen solubility theory,⁵ if Ra is less than R_0 (RED = Ra/ R_0 < 1), lignin can be dissolved in the solvent. Smaller RED numbers indicate higher affinity between the cosolvent and the lignin, indicating a higher degree of dissolution of lignin in the cosolvent.⁶ From table S2, the

calculation results show that the RED numbers are all less than 1 when the water content is less than or equal to 40% in DMI/H₂O cosolvent, which means the DMI/H₂O (10:0-6:4) cosolvent can dissolve lignin. Meanwhile, the RED number of 10:0 (0.89) is similar to 6:4 (0.90), and the RED number of 9:1 (0.77) is same with 7:3 (0.77). Taking energy consumption of DMI recycling into consideration, low proportion of water in the solvent system is expected. So, DMI:H₂O is 10:0, 9:1 and 8:2 were chosen for further exploring in this work.

2. Tables and Figures

DMI:H ₂ O	δ_T (MPa)	$\delta_{\rm D}$ (MPa)	δ_{P} (MPa)	$\delta_{\rm H} ({\rm MPa})$	Ra	Ra/R ₀
10:0	20.4	17.6	7.1	7.5	12.2	0.89
9:1	22.1	17.4	8.0	11.0	10.5	0.77
8:2	24.1	17.2	8.9	14.5	9.9	0.72
7:3	26.6	17.0	9.8	17.9	10.6	0.77
6:4	29.2	16.8	10.7	21.4	12.3	0.90
5:5	32.1	16.6	11.6	24.9	14.7	1.08
4:6	35.0	16.3	12.4	28.4	17.6	1.28
3:7	38.1	16.1	13.3	31.9	20.7	1.51
2:8	41.3	15.9	14.2	35.3	23.9	1.75
1:9	44.5	15.7	15.1	38.8	27.2	1.99
0:10	47.8	15.5	16.0	42.3	30.6	2.24

Table S1 Hansen and Hildebrand solubility parameters of DMI/H2O at various ratios

Table S2 Comparison of pulp yield, lignin yield and lignin removal efficiency at 100 °C and 120 °C

	Temperature	Pulp yield	Lignin yield	Lignin removal efficiency
20 min_10:0	100 °C	76.2%	5.1%	36.9%
60 min_10:0	100 C	67.5%	15.6%	52.2%
20 min_10:0	120 °C	56.6%	32.9%	71.5%
60 min_10:0	120 C	50.7%	43.8%	79.4%

Table S3 Composition of original and pretreated substrates, pulp yield, lignin yield and lignin removal efficiency at various conditions

		Pu	lp compo	sition			-			
	Glu	XY	GM	AG	ASL	AIL	Pulp yield	Lignin yield	Lignin removal efficiency	Cellulose retention
Eucalyptus	50.2%	12.9%	1.9%	1.25%	2.9%	28.2%	100%	-	_	100%
20 min 10:0	75.5%	7.6%	1.3%	0.5%	1.5%	14.2%	56.6%	32.9%	71.5%	85.0%
60 min ⁻ 10:0	81.6%	4.4%	0.8%	0.3%	1.3%	11.3%	50.7%	43.8%	79.4%	82.4%
20 min 9:1	81.5%	0.80%	0.3%	-	1.5%	15.9%	53.9%	32.9%	69.8%	87.5%
60 min_9:1	92.7%	0.40%	0.2%	-	0.9%	5.9%	42.0%	50.6%	91.2%	77.5%
20 min_8:2	64.6%	6.9%	1.5%	0.3%	1.7%	24.9%	69.7%	12.7%	40.6%	89.7%
60 min_8:2	77.5%	4.3%	1.4%	-	1.1%	15.6%	53.7%	38.8%	71.3%	82.8%

Note:

^a Reaction condition: 1.5 g substrate in 15 ml cosolvent, 120 °C 6 h;

^b Glu: glucan, XY: xylan, GM: glucomannan, AG: arabinogalactan, ASL: acid soluble lignin, AIL:

acid insoluble lignin; ^C-: not detected.

Label	$\delta_C / \delta_H \text{ (ppm)}$	Assignments
C_{β}	52.4/3.45	C_{β} -H _{β} in phenylcoumaran substructures (C)
\mathbf{B}_{eta}	53.5/3.05	C_{β} -H _{β} in β - β (resinol) substructures (B)
-OCH3	55.7/3.65	C–H in methoxyls
A_{γ}	59.5/3.64	C_{γ} -H _{γ} in β -O-4 substructures (A)
A'_{γ}	63.0/4.30	C_{γ} -H _{γ} in γ -acylated β -O-4 (A')
C'_{γ}	62.3/3.70	$C_{\gamma} – H_{\gamma}$ in phenylcoumaran substructures (C)
I_{γ}	61.2/4.10	$C_{\gamma}\!\!-\!\!H_{\gamma}$ in cinnamyl alcohol end-groups (I)
HKs	67.0/4.2	Hibbert ketones
\mathbf{B}_{γ}	71.0/3.79-4.16	C_{γ} -H _{γ} in β - β resinol substructures (B)
A_{lpha}	71.6/4.83	$C_{\alpha}\text{-}H_{\alpha}$ in $\beta\text{-}O\text{-}4$ linked to a S units (A)
$A'_{\beta}(G)$	80.8/4.62	$C_{\beta}\!\!-\!\!H_{\beta}$ in $\beta\text{-O-4}$ linked to G (A')
$A_{\beta}(G)$	83.9/4.30	C_{β} – H_{β} in β -O-4 linked to G units (A)
$A'_{\beta}(S)$	83.9/4.30	C_{β} -H _{β} in β -O-4 linked to S units (A')
B_{lpha}	84.9/4.64	C_{α} -H _a in β-β resinol substructures (B)
$A_{\beta}(S)$	85.9/4.11	$C_{\beta}\text{-}H_{\beta}$ in $\beta\text{-}O\text{-}4$ linked to a S units (A)
C_{α}	86.8/5.48	C_{α} – H_{α} in phenylcoumaran substructures (C)
S _{2,6}	104.0/6.72	C _{2,6} -H _{2,6} in syringyl units (S)
S' _{2,6}	106.3/7.21	C _{2,6} -H _{2,6} in oxidized S units (S')
G ₂	111.0/6.99	C ₂ -H ₂ in guaiacyl units (G)
G ₅	114.8/6.68	C ₅ –H ₅ in guaiacyl units (G)
G _{5e}	115.1/6.95	C ₅ -H ₅ in etherified guaiacyl units (G)
G_6	119.1/6.80	C ₆ –H ₆ in guaiacyl units (G)

Table S4 Assignments (13C-1H Cross signals) of major components in the HSQC spectra of lig	nin
--	-----

Table S5 CrI and DP of original and the pretreated substrates under different conditions

	CrI (%)	Crystallite size (nm)	DP
Eucalyptus	72.6%	3.27	$2310\pm\!\!\!14.22$
20 min_10:0	74.3%	3.28	1522 ± 6.23
60 min_10:0	73.8%	3.29	1144 ± 10.62
20 min_9:1	77.8%	3.57	1506 ± 1.90
60 min_9:1	79.5%	3.72	823 ± 1.09
20 min_8:2	75.7%	3.41	1933 ± 1.52
60 min_8:2	78.3%	3.62	1478 ± 2.86

Table S6 Pulp yield, lignin yield and lignin removal efficiency after one recycling cycle

		Pulp yield	Lignin yield	Lignin removal efficiency
--	--	------------	--------------	---------------------------

Fig. S1 Chemical structure of DMI and its traditional synthesis from sugar⁷

Fig. S2 (a) Side-chain regions and (b) aromatic region in the 2D HSQC NMR spectra of DMI lignin for pretreatment 20 min

Fig. S3 X-ray diffraction of original and the pretreated substrates under different conditions

Fig.S4 Comparison of DMI/ H_2O (10:0) and DMI/ H_2O (8:2) extracted with and without 1,4-dioxane before enzymatic hydrolysis at 20 FPU g⁻¹ glucan

Fig.S5 ¹H NMR spectrum of (a) DMI at room temperature, (b) DMI/H₂O (9:1) at room temperature, (c) DMI/H₂O (9:1) with 75 mM H₂SO₄ under 120 °C for 60 min, (d) *Eucalyptus* pretreated with DMI/H₂O (9:1) and 75 mM H₂SO₄ under 120 °C for 60 min

Full NMR Spectra:

References

- A. D. P. Sánchez-Camargo, M. Bueno, F. Parada-Alfonso, A. Cifuentes and E. Ibáñez, *TrAC Trends in Analytical Chemistry*, 2019, 118, 227-237.
- C. Dong, X. Meng, S. Y. Chi, H. Y. Tse, A. J. Ragauskas and S. Y. Leu, *Green Chemistry.*, 2019, 21, 2788-2800.
- 3. Q. Zhang, X. Tan, W. Wang, Q. Yu, Q. Wang, C. Miao, Y. Guo, X. Zhuang and Z. Yuan, *ACS Sustainable Chemistry & Engineering*, 2019, **7**, 8678-8686.
- 4. W. C. d. Ribeiro, V. Lobosco and P. F. M. Martinez, *Bioresources*, 2020, 15, 8577-8600.
- 5. C. M. Hansen, *Hansen Solubility Parameters: A User's Handbook*, Hansen solubility parameters : a user's handbook, 2007.
- 6. C. Dong, X. Meng, C. S. Yeung, H.-Y. Tse, A. J. Ragauskas and S.-Y. Leu, *Green Chemistry*, 2019, **21**, 2788-2800.
- 7. F. G. Calvo-Flores, M. J. Monteagudo-Arrebola, J. A. Dobado and J. Isac-García, *Topics in Current Chemistry*, 2018, **376**, 18.