## Supporting Information

# C-H heteroarylation of aromatics via catalyst free $\mathrm{S}_{\mathrm{N}} \mathbf{2}^{\prime}$ coupling cycloaromatization 

Qixing Lu, ${ }^{\text {a }}$ Tao Wang, ${ }^{\text {a }}$ Qian Wu, ${ }^{\text {a }}$ Lijing Cheng, ${ }^{\text {a }}$ Han Luo, ${ }^{\text {a }}$ Lei Liu, ${ }^{\text {a }}$ Guobiao Chu, ${ }^{\text {b }}$ Lufeng Wang, band Baosheng Li*a

${ }^{\text {a }}$ School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng

Street, Chongqing, 40044, P. R. China

${ }^{\mathrm{b}}$ The National Institutes of Pharmaceutical Research and Development Company Limited, Beijing 102206, China

E-mail: libs@cqu.edu.cn

## Table of Contents

1. General information ..... S3
2. Preparation of substrates $\mathbf{1 a}-\mathbf{8 a}$ ..... S4
3. Conditions optimization. ..... S7
3.1 The synthesis of $\mathbf{1 c}-\mathbf{4 2} \mathbf{c}$ via $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction. ..... S7
3.2 The synthesis of aryl-oxazoles $\mathbf{1 d} \mathbf{- 1 3 d}$ ..... S8
3.3 The synthesis of aryl-thiazoles $\mathbf{1 4 d} \mathbf{- 2 4 d}$ ..... S8
3.4 The synthesis of aryl-imidazoles $\mathbf{2 5 d} \mathbf{d} \mathbf{3 5 d}$ ..... S9
4. Gram-scale reaction ..... S9
5. Solvent free reaction ..... S9
6. Mechanistic study ..... S10
6.1 The preparation of deuterated substrate $\mathbf{1 4 b}^{\prime}$ ..... S10
6.2 KIE experiment ..... S11
7. Characterization data for key compounds ..... S12
8. References ..... S42
9. Copies of NMR spectra ..... S433

## 1. General information

All reactions were carried out under the argon atmosphere with magnetic stirring unless otherwise noted. Reagents were purchased from commercial sources. $\mathrm{TsN}_{3}$ was $75 \% \mathrm{w} / \mathrm{w}$ in ethyl acetate solution. All solvents were dried or distilled prior to use. DCM was distilled over $\mathrm{CaH}_{2}$, THF was distilled over $\mathrm{Na} /$ benzophenone and PhMe was distilled over Na. Glassware was dried in an oven before use. All new compounds were characterized by NMR spectroscopy, IR spectroscopy, high-resolution mass spectroscopy (HRMS).
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker 500 spectrometer $\left({ }^{1} \mathrm{H}\right.$ at 500 MHz and ${ }^{13} \mathrm{C}$ at 126 MHz ) and Bruker 400 spectrometer ( ${ }^{1} \mathrm{H}$ at 400 MHz and ${ }^{13} \mathrm{C}$ at 100 $\mathrm{MHz})$. Chemical shifts for ${ }^{1} \mathrm{H}$ NMR spectra are reported as $\delta$ in units of parts per million (ppm) downfield from $\mathrm{SiMe}_{4}(\delta 0.00)$ and relative to the signal of $\mathrm{SiMe}_{4}$ ( $\delta 0.00$ singlet). ${ }^{1} \mathrm{H}$ NMR splitting patterns are designated as singlet (s), doublet (d), triplet ( t ), quartet (q), multiplets (m), doublet of doublet (dd). Coupling constants are reported as a $J$ value in $\mathrm{Hz} .{ }^{13} \mathrm{C}$ NMR spectra are reported as $\delta$ in units of parts per million (ppm) downfield from $\mathrm{SiMe}_{4}(\delta 0.00)$ and relative to the signal of chloroform- $d\left(\delta 77.00\right.$ triplet). ${ }^{13} \mathrm{C}$ NMR spectra were recorded on the same spectrometer with complete proton decoupling.

Infrared (IR) spectra were measured on Thermofisher Nicolet iN10 FM-IR spectrometer using KBr plates.

High resolution mass spectral analysis (HRMS) was recorded on a FT-ICR (Fourier transform ion cyclotron resonance) mass spectrometer by using electrospray ionization (ESI) techniques.

Column chromatographic was performed on 200-300 mesh silica gel and reactions were monitored by thin layer chromatography (TLC) using silica gel GF254 plates. Visualisation was by ultraviolet fluorescene $(\lambda=254 \mathrm{~nm})$ and staining with the solution of phosphomolybdic acid in EtOH.

## 2. Preparation of substrates 1a-8a

Substrates $\mathbf{1 a}^{1}, \mathbf{2 a} \mathbf{a}^{1}, \mathbf{3 a}^{2}, \mathbf{4 a}^{\mathbf{3}}, \mathbf{5 a}-\mathbf{8} \mathbf{a}^{1}$ were synthesized according to literatures. All acyl halides, sodium sulfonates, sulfonyl azides, terminal alkynes, aldehydes and arenes were commercially available. All structure of substrates as below in the figure.


Syntheses of ( $Z$ ) $-\beta$-sulfonyl substituted enamides 1a, 2a, 5a-8a


Step 1: Copper(I) thiophene-2-carboxylate hydrate (CuTc) ( $1.0 \mathrm{mmol}, 0.1$ equiv.) was added to $\mathrm{PhMe}(40.0 \mathrm{~mL})$ in a 100.0 mL two-necked flask. Then terminal alkynes ( 10.0 mmol ) and $\mathrm{TsN}_{3}(11.0 \mathrm{mmol})$ were slowly injected into the flask. The reaction was stirred at room temperature (r.t.) for one day. After terminal alkynes were completely reacted (monitored by TLC). The reaction mixture was filtered to remove inorganic compound, the solvent was dried over and recrystallized to get $N 1$-sulfonyl-1,2,3-triazoles.

Step 2: The resulting $N 1$-sulfonyl-1,2,3-triazoles were added to $\mathrm{CH}_{3} \mathrm{OH}(40.0 \mathrm{~mL})$ in a 100 mL round bottomed flask, and $\mathrm{K}_{2} \mathrm{CO}_{3}(50.0 \mathrm{mg})$ was added into the flask, then the reaction was stirred at room temperature for 2.0 h (monitored by TLC). The organic solvent was removed and the residue was directly purified by flash column chromatography ( $\mathrm{PE}: \mathrm{EA}=5: 1$ ) to afford $\mathrm{N} 1-\mathrm{H}-1,2,3$, ,triazoles.

Step 3: Under argon, N1-H-1,2,3-triazoles ( $10.0 \mathrm{mmol}, 1.0$ equiv.) and sodium sulfonates ( $10.0 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$ were added into a 100 mL twonecked round bottomed flask, then acyl halides ( $20.0 \mathrm{mmol}, 2.0$ equiv.) were added. The mixture was stirred at $60^{\circ} \mathrm{C}$ in oil bath for 16.0 h . After N1-H-1,2,3-triazoles have been completely reacted, the reaction was cooled to the room temperature. Then the solvent was removed under vacuo, the crude product was directly purified by column chromatography $(P E: E A=50: 1)$ to get the desired products $1 \mathbf{a}^{1}, \mathbf{2} \mathbf{a}^{1}, \mathbf{5 a}-\mathbf{8 a}{ }^{1}$.

Synthesis of (Z)-2-(benzylthio)-1-phenylvinyl triflate 3a


Step 1: Benzyl thioalcohol ( $2.0 \mathrm{mmol}, 1.0$ equiv.) was added dropwise to a stirred solution of $\alpha$-bromoacetophenone ( $2.2 \mathrm{mmol}, 1.1$ equiv.) and sodium carbonate ( 4.0 $\mathrm{mmol}, 2.0$ equiv. $)$ in methanol ( 10.0 mL ) and water ( 10.0 mL ) and stirred for 1.0 h .

Then, the reaction mixture was poured into 10.0 mL of cold 1 M HCl . The product was filtered under vacuum and washed with 10.0 mL ice-cold methanol and 10.0 mL water. Recrystallisation from methanol and filtration gave compound 2-(benzylthio)-1-phenylethan-1-one.

Step 2: The solution of recrystallizd product ( $1.0 \mathrm{mmol}, 1.0$ equiv.) in dry THF ( 5 mL ) was added KHMDS ( $1.1 \mathrm{mmol}, 1.1$ equiv.) at $-78^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature for 0.5 h . The solution was added Comins reagent ( N -( 5 -chloro-2-pyridyl) triflimide) ( $1.1 \mathrm{mmol}, 1.1$ equiv.) which was dissolved in dry THF ( 2.0 mL ) at $-78^{\circ} \mathrm{C}$, and the mixture was then stirred at the same temperature for additional 3.0 h. The reaction was quenched by saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(5.0 \mathrm{~mL})$, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10.0 \mathrm{~mL})$. The combined organic extracts were concentrated under vacuo, and the crude product was directly purified by column chromatography $(\mathrm{PE}: \mathrm{EA}=10: 1)$ to get the desired product $\mathbf{3 a}^{2}$.

Synthesis of 1-phenylvinyl triflate 4a


The solution of acetophenone ( $5.0 \mathrm{mmol}, 1.0$ equiv.) in dichloromethane ( 15.0 mL ) was cooled to $0^{\circ} \mathrm{C}$ and then 2,6-di-tert-butyl-4-methylpyridine (DTBMP) $(5.5 \mathrm{mmol}$, 1.1 equiv.) and trifluoromethanesulfonic anhydride ( $6.0 \mathrm{mmol}, 1.2$ equiv.) were added to the mixture. The reaction was warmed to the room temperature, stirred overnight, and the solvent was evaporated under vacuum. Petroleum ether was added and the solid pyridinium triflate was filtered off (the residue base can be recovered) which was washed with petroleum ether. The combined petroleum ether solution was washed subsequently with cool $\mathrm{HCl}(1 \mathrm{M})$ and saturated brine, and dried over with anhydrous sodium sulfate. The combined organic extracts were concentrated under vacuo, and the crude product was directly purified by column chromatography ( $\mathrm{PE}: \mathrm{EA}=30: 1$ ) to get the desired product $\mathbf{4 a}^{3}$.

## 3. Conditions optimization

The condition optimization of aryl-substituted $a z a$-1,4-dicarbonyl product $\mathbf{1 c}^{a, b}$


| entry | substrate a | solvent | $\mathbf{1 b}$ (Equiv.) | $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | yield $(\%)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathbf{1 a}$ | Hexane | 2.0 | 100 | 33 |
| 2 | $\mathbf{1 a}$ | CHCl $_{3}$ | 2.0 | 100 | 55 |
| $\mathbf{3}$ | $\mathbf{1 a}$ | $\mathbf{D C E}$ | $\mathbf{2 . 0}$ | $\mathbf{1 0 0}$ | $\mathbf{8 3}$ |
| 4 | $\mathbf{1 a}$ | THF | 2.0 | 100 | 28 |
| 5 | $\mathbf{1 a}$ | Dioxane | 2.0 | 100 | 30 |
| 6 | $\mathbf{1 a}$ | DCE | 2.0 | 80 | 52 |
| 7 | $\mathbf{1 a}$ | DCE | 2.0 | 120 | 75 |
| 8 | $\mathbf{1 a}$ | DCE | 1.1 | 100 | 58 |
| 9 | $\mathbf{1 a}$ | DCE | 1.5 | 100 | 75 |
| 10 | $\mathbf{1 a}$ | DCE | 2.5 | 100 | 82 |
| 11 | $\mathbf{2 a}$ | DCE | 2.0 | 100 | N.R. |
| 12 | 3a | DCE | 2.0 | 100 | N.R. |
| 13 | 4a | DCE | 2.0 | 100 | N.D. |

${ }^{a}$ All reactions of $\mathbf{a}(0.1 \mathrm{mmol}, 1.0$ equiv.) and $\mathbf{1 b}$ were carried out in 1.0 mL solvent for 10.0 h under air atmosphere in Schlenk tube, and the reaction was heated by oil bath. ${ }^{b}$ Isolated yields. N.R. $=$ No reaction. N.D. $=$ Not detected.

### 3.1 The synthesis of $1 \mathrm{c}-\mathbf{4 2 c}$ via $\mathrm{S}_{\mathbf{N}} \mathbf{2}^{\prime}$ reaction



Procedure A: The solution of substrates $\mathbf{a}(0.1 \mathrm{mmol}, 1.0$ equiv.) and aromatics $\mathbf{b}$ ( 0.2 mmol , 2.0 equiv.) in DCE ( 1.0 mL ) was added into a Schlenk tube $(10.0 \mathrm{~mL})$, then the reaction was stirred at $100{ }^{\circ} \mathrm{C}$ in oil bath for 10.0 h . Then, the reaction was cooled to the room temperature. The solvent was concentrated under vacuo, and the crude product was purified by column chromatography to get the desired products $\mathbf{1 c} \mathbf{c} \mathbf{4 2 c}$.

NOTE 1: Toluene $\mathbf{8 b}$, benzene $\mathbf{2 5 b}$ and furan $\mathbf{2 6 b}(1.0 \mathrm{~mL})$ were used as substrate and
solvent under the same condition to get the corresponding product $\mathbf{8 c}, \mathbf{2 5 c}$ and $\mathbf{2 6 c}$.
NOTE 2: For the late-stage modification of pharmaceuticals (32c-40c) and functional materials (41c and 42c), the procedure is consistent with the procedure A .
3.2 The synthesis of aryl-oxazoles $1 \mathrm{~d}-13 \mathrm{~d}$


Procedure B: The solution of substrates a ( $0.1 \mathrm{mmol}, 1.0$ equiv.), aromatics $\mathbf{b}(0.2$ $\mathrm{mmol}, 2.0$ equiv.) and trifluoroacetic anhydride ( $0.11 \mathrm{mmol}, 1.1$ equiv.) in DCE ( 1.0 $\mathrm{mL})$ was added into a Schlenk tube $(10.0 \mathrm{~mL})$, then the reaction was stirred at $100^{\circ} \mathrm{C}$ in oil bath for 12.0 h . Then, the reaction was cooled to the room temperature and was concentrated under vacuo, and the crude product was purified by column chromatography to get the desired products 1d-13d.

NOTE: Toluene 8b ( 1.0 mL ) was used as substrate and solvent under the same condition to get the corresponding product $\mathbf{1 d}$.
3.3 The synthesis of aryl-thiazoles $14 d-24 d$


Procedure C: The solution of substrates $\mathbf{1 a}(0.1 \mathrm{mmol}, 1.0$ equiv.) and aromatics $\mathbf{b}(0.2$ mmol, 2.0 equiv.) in DCE ( 1.0 mL ) was added into a Schlenk tube $(10.0 \mathrm{~mL})$, then the reaction was stirred at $100^{\circ} \mathrm{C}$ in oil bath for 10.0 h . Then the reaction mixture was cooled to room temperature and phosphorus pentasulfide ( $0.3 \mathrm{mmol}, 3.0$ equiv.) was added. The resulting reaction system was stirred at $120^{\circ} \mathrm{C}$ in oil bath for 12.0 h once again. Finally, the reaction was cooled to the room temperature and the solvent was removed under vacuo, and the crude product was purified by column chromatography to get the desired products $\mathbf{1 4 d} \mathbf{- 2 4 d}$.

NOTE: Toluene 8b ( 1.0 mL ) was used as substrate and solvent under the same condition to get the corresponding product $\mathbf{1 4 d}$.

### 3.4 The synthesis of aryl-imidazoles 25 d - $\mathbf{3 5 d}$



Procedure D: The solution of substrates $\mathbf{1 a}(0.1 \mathrm{mmol}, 1.0$ equiv.) and arenes $\mathbf{b}(0.2$ mmol, 2.0 equiv.) in DCE ( 1.0 mL ) was added into a Schlenk tube $(10.0 \mathrm{~mL})$, then the reaction was stirred at $100{ }^{\circ} \mathrm{C}$ in oil bath for 10.0 h . Then the reaction mixture was cooled to room temperature and ammonium acetate ( $0.3 \mathrm{mmol}, 3.0$ equiv.) was added. The resulting reaction system was stirred at $110^{\circ} \mathrm{C}$ in oil bath for 10.0 h once again. Finally, the reaction was cooled to the room temperature and the solvent was removed under vacuo, and the crude product was purified by column chromatography to get the desired products 25d-35d.

NOTE: Toluene 8b ( 1.0 mL ) was used as substrate and solvent under the same condition to get the corresponding product $\mathbf{2 5 d}$.

## 4. Gram-scale reaction



According to the procedure A , the gram-scale reaction of $\mathbf{1 a}(1.855 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0$ equiv.) and $\mathbf{1 b}$ ( $1.242 \mathrm{~g}, 10.0 \mathrm{mmol}$ ) was performed to get desired product $\mathbf{1 c}(1.408 \mathrm{~g})$ in $78 \%$ yield.

## 5. Solvent free reaction



The substrate 1a ( $0.3 \mathrm{mmol}, 1.0$ equiv.) and thioanisole $\mathbf{1 b}$ ( $0.6 \mathrm{mmol}, 2.0$ equiv.) were added into a Schlenk tube $(10.0 \mathrm{~mL})$. The reaction was stirred at $100^{\circ} \mathrm{C}$ in oil bath for 10.0 h . Then, the reaction was cooled to the room temperature. The residue thioanisole was removed under vacuo, and the crude product was purified by column chromatography ( $\mathrm{PE}: \mathrm{EA}=7: 1$ ) to get desired product $\mathbf{1 c}(78.2 \mathrm{mg})$ in $72 \%$ yield.

## 6. Mechanistic study

6.1 The preparation of deuterated substrate 14b'


1-Bromo-2,3,4-trimethoxybenzene ( $2.0 \mathrm{mmol}, 1.0$ equiv.) was added to THF ( 10.0 mL ) with a 50.0 mL two-necked flask under argon atmosphere. Then $n-\operatorname{BuLi}(2.2 \mathrm{mmol}$, 1.1 equiv.) was added dropwise at $-78^{\circ} \mathrm{C}$. The resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1.0 h , and $\mathrm{D}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ was added dropwise. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1.0 h , and 10 mL of water was added. Then the aqueous layer was extracted with ethyl acetate ( $3 \times 10.0 \mathrm{~mL}$ ). The combined organic extracts were washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated under vacuo, the crude product was directly purified by column chromatography (PE: EA =50:1) to afford deuterated product 14b' ( $85 \%$ yield, $80 \% \mathrm{D}$ ).

${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




### 6.2 KIE experiment



The reaction of $\mathbf{1 a}$ ( $0.1 \mathrm{mmol}, 1.0$ equiv.) and 14b' ( $0.2 \mathrm{mmol}, 2.0$ equiv.) was performed under our standard reaction condition. For the calculation of the KIE value, the $\mathrm{H} / \mathrm{D}$ ratio was determined by NMR spectroscopy. The control experiment shown that the $\mathrm{H} / \mathrm{D}$ ratio of product $\mathbf{1 4 c}(0.79 \mathrm{H} / 0.21 \mathrm{D})$ is higher than $0.6 \mathrm{H} / 0.4 \mathrm{D}$, namely deuterium atom has a higher reaction rate than hydrogen atom. This result exhibited an inverse $\left(\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}<1\right)$ KIE and strongly correspond with the $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ mechanism.



$0.79 \mathrm{H}+0.21 \mathrm{D}$


## 7. Characterization data for key compounds

N-(1-(4-(methylthio)phenyl)-2-oxo-2-phenylethyl)benzamide (1c)
 According to procedure A , the title product $\mathbf{1 c}(30.0 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=7: 1$ ) as a yellow amorphous solid in $83 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.01(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 6 \mathrm{H}), 7.18$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 195.7,166.4,139.2,134.3,134.0,133.9,133.9,131.7,129.2,128.8,128.8,128.6$, 127.2, 127.0, 58.5, 15.5; IR(cm ${ }^{-1}$ ): v 3414, 2919, 1688, 1654, 1480, 1447, 1246, 1094; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{~S}^{+}, 362.1209$, found 362.1205.

N-(2-oxo-2-phenyl-1-(4-(phenylthio)phenyl)ethyl)benzamide (2c)
 According to procedure A , the title product $\mathbf{2 c}(31.8 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=10: 1$ ) as a yellow amorphous solid in $75 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} \mathbf{3}$ ) $\delta 8.01(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.85(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.42$
(m, 5H), 7.39 - 7.34 (m, 3H), 7.29 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.19 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.71$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 195.6,166.4,137.4,135.5,134.2$, $134.0,133.9,132.4,131.8,130.2,129.3,129.2,129.0,128.8,128.6,128.5,127.8,127.2$, 58.4; IR (cm ${ }^{-1}$ ): v 3407, 3058, 1686, 1650, 1512, 1477, 1447, 1178; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}^{+}, 424.1365$, found 424.1361.

N -(2-oxo-1-(4-phenoxyphenyl)-2-phenylethyl)benzamide (3c)


According to procedure A , the title product $\mathbf{3 c}(29.4 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=10: 1$ ) as a white amorphous solid in $72 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$ ) $\delta 8.03(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.86(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.41$ (m, 6H), 7.29 (t, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.90(\mathrm{~m}, 4 \mathrm{H}), 6.75(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 195.8,166.4,157.6,156.3,134.2$, $133.9,133.8,131.7,131.6,130.0,129.7,129.2,128.7,128.5,127.1,123.7,119.4,118.9$, 58.2; IR (cm ${ }^{-1}$ ): v 3374, 1683, 1646, 1588, 1504, 1447, 1350, 1243, 1169; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{NO}_{3}{ }^{+}, 408.1594$, found 408.1586.

N-(1-(4-(benzyloxy)phenyl)-2-oxo-2-phenylethyl)benzamide (4c) ( solid in $70 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 8.02(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.85(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.40$ (m, 5H), $7.39-7.29(\mathrm{~m}, 6 \mathrm{H}), 6.92(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.98$ (s, 2H); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 195.9, 166.3, 158.8, 136.6, 134.3, 134.0, 133.8, 131.7, 129.6, 129.5, 129.2, 128.7, 128.6, 128.5, 128.0, 127.4, 127.1, 115.5, 70.0, 58.3; IR (cm ${ }^{-1}$ ): v 3411, 3061, 2925, 1686, 1654, 1508, 1480, 1244, 1177; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{NO}_{3}{ }^{+}, 422.1740$, found 422.1750 .

N-(1-(4-(allyloxy)phenyl)-2-oxo-2-phenylethyl)benzamide (5c)


According to procedure A, the title product $5 \mathbf{c}(25.2 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=10: 1$ ) as a white amorphous solid in $68 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$ ) $\delta 8.02(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 6 \mathrm{H}), 6.85$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.04-5.95(\mathrm{~m}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=17.2 \mathrm{~Hz}$, $\left.1 \mathrm{H}), 5.25(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ ( 1 0 0 ~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 195.9,166.3,158.6,134.3,134.0,133.8,133.0,131.7,129.6,129.4,129.2,129.1$, 128.7, 128.5, 127.1, 117.8, 115.4, 68.8, 58.3; IR (cm ${ }^{-1}$ ): v 3411, 3062, 2922, 1650, 1508, 1482, 1244, 1108; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NO}_{3}{ }^{+}, 372.1594$, found 372.1584.

N-(1-(4-(diphenylamino)phenyl)-2-oxo-2-phenylethyl)benzamide (6c)
According to procedure A , the title product $\mathbf{6 c}(35.2 \mathrm{mg})$ was isolated
 by column chromatography ( $\mathrm{PE}: \mathrm{EA}=7: 1$ ) as a white amorphous solid in $73 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta 8.06(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.87$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.43$ (m, 6H), 7.30 (d, $J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.04-6.96(\mathrm{~m}, 8 \mathrm{H}), 6.70(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 195.8,166.3,147.9,147.3,134.4,134.0,133.8,131.7$, 130.1, 129.3, 129.2, 129.1, 128.8, 128.6, 127.2, 124.9, 123.3, 123.0, 58.2; IR ( $\mathbf{c m}^{-1}$ ): v 3415, 3060, 1655, 1594, 1507, 1490, 1273, 696; HRMS: m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{33} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{2}{ }^{+}, 505.1887$, found 505.1890.

N-(2-oxo-2-phenyl-1-(4-(pyrrolidin-1-yl)phenyl)ethyl)benzamide (7c)


According to procedure A , the title product $7 \mathrm{c}(30.0 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=7: 1$ ) as a white amorphous solid in $78 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ ( ~} \mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 8.03(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.43-$ 7.37 (m, 4H), 7.31 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.20(\mathrm{t}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.95-1.92(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$
196.0, 166.3, 147.7, 134.6, 134.2, 133.4, 131.5, 129.3, 129.1, 128.6, 128.4, 127.1, 123.1, 112.0, 58.6, 47.4, 25.4; IR (cm ${ }^{-1}$ ): v 3411, 3326, 3060, 2964, 1686, 1611, 1521, 1178;

HRMS: $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}, 385.1911$, found 385.1918.

## N-(2-oxo-2-phenyl-1-(p-tolyl)ethyl)benzamide (8c)



According to procedure A, the title product $8 \mathbf{c}(32.2 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=15: 1$ ) as a white amorphous solid in $98 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 8.02(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.84$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.71$ (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.40$ (m, 4H), 7.37 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 196.0,166.3,138.3,134.4,134.3,134.1$, 133.8, 131.6, 129.9, 129.2, 128.7, 128.5, 128.2, 127.2, 58.7, 21.1; IR (cm ${ }^{-1}$ ): v 3328, 3057, 2922, 1682, 1638, 1579, 1513, 1353; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NO}_{2}{ }^{+}, 330.1488$, found 330.1481 .

N -(1-(2,3-dihydrobenzofuran-5-yl)-2-oxo-2-phenylethyl)benzamide (9c)
 According to procedure A , the title product $9 \mathrm{c}(29.7 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=7: 1$ ) as a white amorphous solid in $83 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 8.03$ (d, $J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.46-$ 7.42 (m, 4H), 7.32 (s, 1H), 7.21 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.72-6.67(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{t}, J=$ $\left.8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ ( 1 0 0 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta 195.9,166.3$, $160.3,134.3,134.0,133.7,131.7,129.2,129.1,128.7,128.5,128.4,128.2,127.1,125.0$, 109.8, 71.4, 58.5, 29.5; IR (cm ${ }^{-1}$ ): v 3407, 3059, 2918, 1689, 1642, 1483, 1447, 1240; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{NO}_{3}{ }^{+}, 358.1437$, found 358.1433.

## N -(1-(benzo[d][1,3]dioxol-5-yl)-2-oxo-2-phenylethyl)benzamide (10c)



According to procedure A, the title product $10 \mathrm{c}(32.0 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=7: 1$ ) as a white amorphous solid
in $89 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.02(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.00-$ 6.95 (m, 2H), $6.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 195.6, 166.3, 148.2, 147.7, 134.2, 133.9, 131.7, 130.9, 129.1, 128.8, 128.7, 128.6, 127.1, 122.2, 108.9, 108.6, 101.3, 58.5; IR (cm ${ }^{-1}$ ): v 3408, 2921, 1687, 1650, 1485, 1445, 1345, 1250, 1038, 694; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{NO}_{4}{ }^{+}, 360.1230$, found 360.1220 .

N -(2-oxo-2-phenyl-1-(5,6,7,8-tetrahydronaphthalen-2-yl)ethyl)benzamide (11c) According to procedure A, the title product $11 \mathrm{c}(22.9 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=10: 1$ ) as a white amorphous solid in $62 \%$ yield. ${ }^{1} \mathbf{H}$ NMR ( $400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 8.04(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.84(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.70-2.68(\mathrm{~m}, 4 \mathrm{H}), 1.74-1.71(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 196.0,166.3$, $138.2,137.6,134.5,134.1,133.7,131.6,130.7,130.0,129.2,128.8,128.7,128.5,127.2$, 125.4, 58.7, 29.3, 29.1, 23.0, 22.9; IR (cm ${ }^{-1}$ ): v 3411, 3059, 2927, 2856, 1650, 1512, 1481, 1259, 689; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{NO}_{2}{ }^{+}, 370.1801$, found 370.1791 .

N-(1-(7,8-dihydronaphthalen-2-yl)-2-oxo-2-phenylethyl)benzamide (12c)


According to procedure A, the title product $\mathbf{1 2 c}(30.1 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=10: 1$ ) as a white amorphous solid in $82 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 8.09(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, 2H), 7.88 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.44(\mathrm{~m}, 5 \mathrm{H}), 7.12-7.07$ $(\mathrm{m}, 2 \mathrm{H}), 7.04-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.67(\mathrm{~m}$, 2H), 2.45 - 2.26 (m, 2H); ${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z , ~ C D C l} 3$ ) $\delta$ 196.1, 166.7, 135.8, 134.6, $134.5,134.0,133.4,131.8,130.1,129.0,128.9,128.8,128.6,127.6,127.2,127.1,126.6$, 126.5, 59.8, 27.9, 24.2; IR (cm ${ }^{-1}$ ): v 3319, 3060, 2928, 2831, 1646, 1482, 1248, 1107,

757; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{NO}_{2}{ }^{+}, 368.1645$, found 368.1641 .

N-(1-(2,4-dimethoxy-3-methylphenyl)-2-oxo-2-phenylethyl)benzamide (13c)

## Meo-/ According to procedure A, the title product $\mathbf{1 3 c}(31.6 \mathrm{mg})$ was isolated

 by column chromatography ( $\mathrm{PE}: \mathrm{EA}=7: 1$ ) as a white amorphous solid in $81 \%$ yield. ${ }^{1} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 8.11(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 4 \mathrm{H})$, $7.18(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H})$, $3.74(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 196.2, 166.5, 159.1, 157.0, $134.4,134.3,133.5,131.6,130.1,129.1,128.5,127.1,126.4,122.5,120.5,106.6,61.5$, 55.5, 54.0, 9.5; IR (cm ${ }^{-1}$ ): v 3330, 2937, 2600, 1658, 1473, 1106, 1003, 798; HRMS: $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{NO}_{4}{ }^{+}, 390.1699$, found 390.1696.N-(2-oxo-2-phenyl-1-(2,3,4-trimethoxyphenyl)ethyl)benzamide (14c)


According to procedure A, the title product $\mathbf{1 4 c}(36.2 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=5: 1$ ) as a white amorphous solid in $89 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 8.09$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.07(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.60$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 195.9,166.3,154.0,151.4,142.3,134.3,133.5,131.6,129.0,128.5,127.1$, 123.6, 123.4, 107.6, 61.3, 60.6, 55.9, 54.3; IR (cm-1): v 3408, 2934, 1655, 1493, 1448, 1279, 1099, 798, 691; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{NO}_{5}{ }^{+}, 406.1649$, found 406.1632.

N -(1-mesityl-2-oxo-2-phenylethyl)benzamide (15c)


According to procedure A, the title product $\mathbf{1 5 c}(27.2 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=10: 1$ ) as a white amorphous solid in $76 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 7.86(\mathrm{~d}, J=7.2 \mathrm{~Hz}$,

2H), 7.79 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.57 (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.42$ (m, 4H), 7.34 (t, $J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~s}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 6 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl 3 ) $\delta$ 197.6, 166.7, 138.1, 137.2, 135.3, 134.2, 133.3, 131.6, 131.3, 130.7, 128.6, 128.5, 128.4, 127.2, 57.9, 20.8, 20.7; IR (cm ${ }^{-1}$ ): v 3397, 2920, 1697, 1658, 1479, 1227, 852, 689, 597; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{2} \mathrm{NO}_{2}{ }^{+}$, 358.1801, found 358.1802 .

N-(2-oxo-2-phenyl-1-(2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-9yl)ethyl)benzamide (16c)


According to procedure A, the title product 16c ( 29.6 mg ) was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=10: 1$ ) as a white amorphous solid in $72 \%$ yield. ${ }^{1} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 8.05(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.84(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.42(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 6.85(\mathrm{~s}$, 2H), 6.57 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{t}, J=5.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.68(\mathrm{t}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.92-$ $1.86(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta$ 196.1, 166.2, 142.9, 134.8, 134.2, 133.4, $131.5,129.2,128.6,128.4,127.2,126.8,123.0,121.9,58.4,49.8,27.6,21.7$; IR (cm${ }^{1}$ ): $v$ 3322, 2926, 1650, 1514, 1447, 1312, 1160, 713, 691; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}, 411.2067$, found 411.2064.

N-(1-(2-methoxynaphthalen-1-yl)-2-oxo-2-phenylethyl)benzamide (17c)
According to procedure A, the title product $\mathbf{1 7 c}(24.9 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=10: 1$ ) as a white amorphous solid in $63 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 8.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.85$ - $7.75(\mathrm{~m}, 6 \mathrm{H}), 7.67-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.20-7.11(\mathrm{~m}, 3 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 197.0, 167.0, 155.2, 134.9, 134.3, 132.8, 132.2, $131.5,131.0,129.6,128.8,128.4,128.2,128.1,128.0,127.2,123.9,122.9,119.4,113.3$, 56.2, 53.5; IR (cm ${ }^{-1}$ ): v 3423, 2934, 2840, 1697, 1650, 1513, 1446, 1253, 813, 709; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{NO}_{3}{ }^{+}, 396.1594$, found 396.1588.

N -(1-(5-methylfuran-2-yl)-2-oxo-2-phenylethyl)benzamide (18c)


According to procedure A , the title product $18 \mathrm{c}(25.5 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=7: 1$ ) as a white amorphous solid in $80 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 8.13-8.06(\mathrm{~m}, 3 \mathrm{H}), 7.89$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 4 \mathrm{H}), 6.87(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.33(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$ ) $\delta 193.2,166.4,153.0,147.4,134.2,133.9,133.8,131.8,129.0,128.7,128.6$, 127.2, 110.5, 107.0, 52.7, 13.6; IR (cm ${ }^{-1}$ ): v 3425, 1693, 1601, 1580, 1517, 1483, 1449, 1223, 1024, 790; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{3}{ }^{+}, 320.1281$, found 320.1282 .

N-(1-(2,5-dimethylthiophen-3-yl)-2-oxo-2-phenylethyl)benzamide (19c)


According to procedure A, the title product $19 \mathrm{c}(34.2 \mathrm{mg})$ was isolated by column chromatography $(\mathrm{PE}: \mathrm{EA}=15: 1)$ as a white amorphous solid in $98 \%$ yield. ${ }^{1} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 7.96(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.85(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 4 \mathrm{H}), 6.66(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $100 \mathbf{M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 196.1, 166.4, 137.1, 135.5, 134.5, 133.8, 131.7, 131.4, 130.1, 128.7, 128.5, 128.4, 127.2, 124.2, 53.1, 15.1, 13.3; IR ( $\mathbf{c m}^{-1}$ ): v 3414, 2921, 1655, 1491, 1276, 1096, 1013, 798, 712; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{~S}^{+}$, 350.1209 , found 350.1208 .

N -(1-(2,5-dimethyl-1H-pyrrol-3-yl)-2-oxo-2-phenylethyl)benzamide (20c)


According to procedure A , the title product 20c $(24.6 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=10: 1$ ) as a white amorphous solid in $74 \%$ yield. ${ }^{1} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 8.00(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.84(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 5 \mathrm{H}), 6.59(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, 1H), $5.66(\mathrm{~s}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 196.3$, $166.3,135.0,134.3,133.2,131.4,128.8,128.5,128.4,127.1,126.3,124.5,114.7,105.1$,
52.1, 12.9, 11.4; IR (cm ${ }^{-1}$ ): v 3313, 3060, 1686, 1642, 1513, 1482, 1447, 688; HRMS: $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{2}{ }^{+}, 355.1417$, found 355.1421.

N -(1-(benzo[b]thiophen-2-yl)-2-oxo-2-phenylethyl)benzamide (21c)


According to procedure A , the title product $21 \mathrm{c}(27.1 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=7: 1$ ) as a white amorphous solid in $73 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 8.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.01(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.87-7.83(\mathrm{~m}, 3 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 5 \mathrm{H})$, $7.36(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.25(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 195.8,166.8,140.6$, $137.2,134.4,134.0,133.8,131.9,131.6,128.9,128.8,128.6,127.2,126.9,125.1,125.0$, 123.0, 122.3, 52.7; IR ( $\mathbf{c m}^{-1}$ ): v 3311, 3058, 1691, 1646, 1511, 1480, 1339, 761; HRMS: $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{NNaO}_{2} \mathrm{~S}^{+}, 394.0872$, found 394.0874.

N -(1-(3-methyl-1H-indol-2-yl)-2-oxo-2-phenylethyl)benzamide (22c)


According to procedure A, the title product 22c $(28.7 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=5: 1$ ) as a white amorphous solid in $78 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 8.94(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.46(\mathrm{~m}, 3 \mathrm{H})$, $7.42-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.03(\mathrm{~m}, 1 \mathrm{H})$, $6.98(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 195.0,167.1$, $135.9,134.2,134.1,133.4,132.0,129.0,128.9,128.8,128.7,128.6,127.1,122.8,119.4$, 119.0, 111.1, 110.4, 52.4, 8.6; IR (cm ${ }^{-1}$ ): v 3388, 3059, 1687, 1638, 1482, 1448, 1263, 711; HRMS: $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{2}{ }^{+}, 391.1417$, found 391.1430.

N -(1-(dibenzo[b,d]furan-2-yl)-2-oxo-2-phenylethyl)benzamide (23c)


According to procedure A , the title product $\mathbf{2 3 c}(34.1 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=7: 1$ ) as a white amorphous solid in $84 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 8.09-8.05$ (m, $3 \mathrm{H}), 7.93-7.86(\mathrm{~m}, 4 \mathrm{H}), 7.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.38(\mathrm{~m}$,
$5 \mathrm{H}), 7.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $195.9,166.4,156.6,155.9,134.2,133.9,133.8,131.9,131.7,129.2,128.8,128.6,127.5$, 127.4, 127.2, 125.1, 123.7, 122.9, 120.9, 120.8, 112.4, 111.7, 58.9; IR (cm ${ }^{-1}$ ): v 3408, 3058, 2924, 1650, 1510, 1448, 1198, 1024, 799; HRMS: m/z: [M+H] ${ }^{+}$calculated for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{NO}_{3}{ }^{+}, 406.1437$, found 406.1425 .

N -(1-(9-methyl-9H-carbazol-3-yl)-2-oxo-2-phenylethyl)benzamide (24c)


According to procedure A, the title product $24 \mathrm{c}(26.0 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=5: 1$ ) as a white amorphous solid in $62 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 8.19$ (s, 1H), 8.08 (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.86(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.42(\mathrm{~m}, 5 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.94(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 196.1,166.4$, $141.3,140.7,134.5,134.1,133.6,131.6,130.1,129.2,128.7,128.5,127.6,127.2,126.0$, 123.4, 122.4, 120.6, 120.4, 119.2, 109.2, 108.5, 59.3, 29.1; IR (cm ${ }^{-1}$ ): v 3408, 2925, 1654, 1510, 1482, 1447, 1325, 1248, 689; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}, 419.1754$, found 419.1757.

N -(2-oxo-1,2-diphenylethyl)benzamide (25c)


According to procedure A , the title product $\mathbf{2 5 c}(13.5 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=7: 1$ ) as a white amorphous solid in $42 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 8.06-8.00(\mathrm{~m}, \mathbf{2 H}), 7.88-$ 7.83 (m, 2H), 7.75 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.40(\mathrm{~m}, 8 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 3 \mathrm{H}), 6.76$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$ ); IR (cm ${ }^{-1}$ ): v 3328, 2922, 1682, 1638, 1579, 1513, 1485, 1448, 689; HRMS: $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}_{2}{ }^{+}, 316.1332$, found 316.1327. This is a known compound ${ }^{7}$.

N-(1-(furan-2-yl)-2-oxo-2-phenylethyl)benzamide (26c)
According to procedure A, the title product $\mathbf{2 6 c}(19.8 \mathrm{mg})$ was isolated by
 column chromatography ( $\mathrm{PE}: \mathrm{EA}=7: 1$ ) as a white amorphous solid in $65 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 8.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.43(\mathrm{~m}, 7 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.45$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.32-6.30(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 193.03, 166.55, $149.32,143.01,134.07,131.87,130.10,129.01,128.75,128.56,128.40,127.22,110.91$, 109.53, 52.58; IR (cm ${ }^{-1}$ ): v 3462, 2922, 1696, 1604, 1486, 1447, 1238, 1105, 699; HRMS: $\mathrm{m} / \mathrm{z}: ~[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}_{3}{ }^{+}, 306.1124$, found 316.1120 .

N-(1-(5-bromo-2-methoxyphenyl)-2-oxo-2-phenylethyl)benzamide (27c)


According to procedure A, the title product $\mathbf{2 7 c}(23.0 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=7: 1$ ) as a white amorphous solid in $54 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta 8.03(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.86 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.75-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.38(\mathrm{~m}, 7 \mathrm{H}), 7.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.89(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( 100 $\mathbf{M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 195.7, 166.4, 155.8, $134.20,133.74,133.60,132.52,132.02,131.75$, $130.12,128.79,128.56,128.42,127.19,113.46,113.34,56.08,53.87$; IR ( $\mathbf{c m}^{-1}$ ): v 3422, 2923, 1650, 1597, 1514, 1482, 1448, 1263, 1026; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{BrNO}_{3}{ }^{+}, 424.0542$, found 424.0535.

N -(1-(4-(methylthio)phenyl)-2-oxo-2-(p-tolyl)ethyl)benzamide (28c)


According to procedure A , the title product $\mathbf{2 8 c}(30.8 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=7: 1$ ) as a white amorphous solid in $82 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta 7.91$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.84(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.38$ (m, 4H), 7.22 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.42(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 195.2, 166.3, 145.1, 139.0, $134.2,133.9,131.7,131.6,129.5,129.3,128.7,128.6,127.1,126.9,58.3,21.7,15.4 ;$

IR (cm ${ }^{-1}$ ) v 3408, 3059, 1651, 1480, 1282, 1177, 1095, 711; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}^{+}, 376.1366$, found 376.1369.

N-(1-(4-(methylthio)phenyl)-2-(naphthalen-2-yl)-2-oxoethyl)benzamide (29c)


According to procedure A, the title product 29c ( 32.1 mg ) was isolated by column chromatography (PE: $\mathrm{EA}=7: 1$ ) as a white amorphous solid in $78 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ $8.58(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.82(\mathrm{~m}, 5 \mathrm{H})$, $7.63-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.46(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}$ ), $2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 195.6, 166.4, 139.2, 135.9, 134.0, $133.9,132.3,131.8,131.5,131.4,129.8,129.1,128.8,128.7,128.6,127.8,127.2,127.0$, 126.9, 124.2, 58.5, 15.4; IR (cm ${ }^{-1}$ ): v 3411, 2920, 1685, 1647, 1509, 1482, 1095, 711; HRMS: $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{NNaO}_{2} \mathrm{~S}^{+}, 434.1185$, found 434.1189.

N-(2-(4-chlorophenyl)-2-oxo-1-(2,3,4-trimethoxyphenyl)ethyl)benzamide (30c)


According to procedure A, the title product $\mathbf{3 0 c}(33.0 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=5: 1$ ) as a white amorphous solid in $75 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $8.04(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.85 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 194.8, 166.3, 154.1, 151.3, 142.4, 140.0, 134.1, 132.6, 131.7, 130.4, 128.9, 128.5, 127.1, 123.4, 123.0, 107.7, 61.4, 60.7, 55.9, 54.2; IR (cm-1): v 3408, 2941, 2836, 1693, 1592, 1280, 1098, 798; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{ClNO}_{5}{ }^{+}, 440.1259$, found 440.1249 .

4-methyl-N-(2-oxo-2-phenyl-1-(2,3,4-trimethoxyphenyl)ethyl)benzamide (31c)


According to procedure A, the title product 31c ( 31.9 mg ) was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=7: 1$ ) as a white amorphous solid in $76 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.01$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.42(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.31$ (s, 3H); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 196.0, 166.2, 153.9, 151.4, 142.3, 142.0, 134.3, $133.5,131.4,129.1,129.0,128.5,127.1,123.6,123.5,107.6,61.3,60.6,55.8,54.2$, 21.4; IR (cm ${ }^{-1}$ ): v 3408, 2940, 2835, 1921, 1417, 1210, 1099, 1012, 800; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{NO}_{5}^{+}, 420.1805$, found 420.1798.

N-(1-(4-hydroxy-3,5-diisopropylphenyl)-2-oxo-2-phenylethyl)benzamide (32c)
 According to procedure A , the title product 32c $(31.6 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=5: 1$ ) as a white amorphous solid in $76 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.01(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.85(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.38(\mathrm{~m}$, $4 \mathrm{H}), 7.12(\mathrm{~s}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-3.04(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $6 \mathrm{H}), 1.18(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 196.5, 166.5, 150.2, $134.8,134.5,134.2,133.5,131.6,129.0,128.7,128.6,128.5,127.2,123.7,58.9,27.3$, 22.6, 22.5; IR (cm ${ }^{-1}$ ): v 3322, 2953, 1652, 1564, 1479, 1277, 1191, 875, 812; HRMS: $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{NO}_{3}{ }^{+}, 416.2220$, found 416.2225 .

N-(1-(2-chloro-5-(2,4-dichlorophenoxy)-4-hydroxyphenyl)-2-oxo-2phenylethyl)benzamide (33c)


According to procedure A, the title product $\mathbf{3 3 c}(29.5 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=4: 1$ ) as a white amorphous solid in $56 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{O C D}_{3}$ ) $\delta 8.26(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.2$

Hz, 1H), $7.39-7.36$ (m, 4H), 7.29 (t, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.07-7.04(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{~s}$, $\left.1 \mathrm{H}), 6.94-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.52(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ ( 1 0 0 ~ M H z}, \mathbf{C D}_{\mathbf{3}} \mathbf{O C D} \mathbf{D}_{3}\right)$ $\delta 195.4,166.3,152.2,149.7,141.6,135.3,134.0,133.5,131.6,129.9,128.8,128.4$, 128.3, 128.3, 128.0, 127.5, 127.5, 126.3, 124.0, 122.5, 118.4, 118.1, 55.9; IR (cm ${ }^{-1}$ ): v 3405, 2924, 1643, 1505, 1473, 1448, 1292, 1234, 1099, 711; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{Cl}_{3} \mathrm{NO}_{4}{ }^{+}, 526.0374$, found 526.0380.

2-(6-(1-benzamido-2-oxo-2-phenylethyl)-1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetic acid (34c)


According to procedure A, the title product $\mathbf{3 4 c}(39.9 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=1: 1$ ) as a white amorphous solid in $67 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 7.97 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.76$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.56-7.33$ (m, 10H), 7.25 ( $\mathrm{s}, 1 \mathrm{H}$ ), $6.94-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl3) $\delta$ 195.8, 174.9, 168.0, 166.2, 153.3, 139.5, 138.9, 136.9, 134.4, $133.9,133.5,133.3,131.6,131.2,130.5,129.1,128.8,128.5,128.4,127.1,122.0,114.9$, 111.5, 100.5, 56.3, 54.1, 29.8, 13.1; IR (cm-1): v 3406, 3064, 2924, 1686, 1481, 1324, 1226, 1089, 753 ; HRMS: $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{ClN}_{2} \mathrm{O}_{6}{ }^{+}, 583.1630$, found 583.1632 .

5-(4-(1-benzamido-2-oxo-2-phenylethyl)-2,5-dimethylphenoxy)-2,2dimethylpentanoic acid (35c)


According to procedure A , the title product $\mathbf{3 5 c}(31.7 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=2: 1$ ) as a white amorphous solid in $65 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ $7.91(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.35(\mathrm{~m}$, $5 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.66$ (s, 3H), $2.06(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.66(\mathrm{~m}, 4 \mathrm{H}), 1.22(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 197.0,183.5,166.5,157.0,135.4,135.0,134.0,133.4,131.6,129.8,128.7,128.6$,
$128.5,127.2,126.3,125.1,113.7,67.9,55.9,41.8,36.8,25.1,25.0,24.9,19.8,15.7$; IR (cm ${ }^{-1}$ ): v 3334, 3061, 2954, 1697, 1650, 1511, 1477, 1277, 1245, 707; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{NO}_{5}{ }^{+}, 488.2431$, found 488.2428.

N -(1-(4-(4-(5-methyl-2,4-dioxo-3-(phenylamino)oxazolidin-5-yl)phenoxy)phenyl)-2-oxo-2-phenylethyl)benzamide (36c)


According to procedure A , the title product $\mathbf{3 6 c}(32.4 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=3: 1$ ) as a white amorphous solid in $53 \%$ yield. ${ }^{1} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 7.98$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.83 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.72 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 8 \mathrm{H}), 7.17(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 6.68-6.63(\mathrm{~m}, 3 \mathrm{H}), 6.23-6.20(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 195.7,171.8,166.3,158.6,156.1,152.6,144.3,134.1$, $134.0,133.8,131.8,130.0,130.0,129.7,129.2,128.8,128.6,127.1,126.0,124.1,119.6$, 119.6, 118.6, 114.5, 85.1, 58.2, 25.5; IR (cm ${ }^{-1}$ ): v 3371, 2922, 1827, 1759, 1656, 1508, 1448, 1242, 692; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{3} 7 \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{6}{ }^{+}, 612.2129$, found 612.2139.

N-(1-(2,6-dimethyl-4-((2-oxooxazolidin-5-yl)methoxy)phenyl)-2-oxo-2phenylethyl)benzamide (37c)


According to procedure A, the title product $\mathbf{3 7 c}(28.0 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=1: 1$ ) as a white amorphous solid in $61 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 7.90 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.86$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.72$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.43$ (m, 4H), $7.34(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H})$, $5.71-5.64(\mathrm{~m}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.82-3.71(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H})$, , $\left.{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ ( 1 0 0 ~ M H z}, \mathbf{C D C l} 3\right) \delta 196.9$, $166.6,159.4,155.8,139.4,138.4,134.9,134.0,133.3,131.6,130.0,128.6,128.2,127.3$, 125.7, 122.6, 110.7, 74.0, 67.7, 54.5, 42.3, 21.4, 20.3; IR (cm ${ }^{-1}$ ): v 3415, 2923, 1759,

1655, 1483, 1447, 1236, 1085, 692; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}$, 459.1914, found 459.1897.

Methyl(2S)-2-(5-(1-benzamido-2-oxo-2-phenylethyl)-6-methoxynaphthalen-2yl)propanoate ( $\mathbf{3 8 c}$ )


According to procedure A , the title product $\mathbf{3 8 c}(36.6 \mathrm{mg})$ was isolated by column chromatography $(\mathrm{PE}: \mathrm{EA}=5: 1)$ as a white amorphous solid in $76 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.52$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.75(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, 1H), 7.68 (s, 1H), 7.59 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.47 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.43-7.36$ (m, $4 \mathrm{H}), 7.22(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}$, $3 \mathrm{H}), 3.69$ (d, $J=1.6 \mathrm{~Hz}, 3 \mathrm{H}$ ), 1.59 (d, $J=3.2 \mathrm{~Hz}, 3 \mathrm{H}$ ); ${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ ( ~} \mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 197.0,174.9,167.0,155.2,135.9,134.9,134.3,132.9,131.5,131.4,130.9,129.7$, $128.4,128.2,128.1,128.0,127.3,126.9,123.5,119.4,113.6,56.3,53.6,52.1,45.1$, 18.6; IR (cm ${ }^{-1}$ ): v 2925, 1687, 1597, 1507, 1426, 1326, 1176, 1073, 708; HRMS: m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{NNaO}_{5}{ }^{+}, 504.1781$, found 504.1792.

N-(1-(7-methoxy-4-methyl-2-oxo-2H-chromen-6-yl)-2-oxo-2-phenylethyl)benzamide (39c)


According to procedure A, the title product $39 \mathrm{c}(20.6 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=4: 1$ ) as a white amorphous solid in $48 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 8.12(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 5 \mathrm{H}), 7.37-$ 7.33 (m, 2H), 7.27 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86$ (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.13$ (s, 1H), 4.05 (s, 3H), 2.33 ( $\mathrm{s}, 3 \mathrm{H}$ ); ${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta 195.3,166.3,160.0,159.8,152.6$, 152.4, 134.9, 134.1, 133.3, 131.6, 128.5, 128.4, 128.3, 127.3, 125.8, 114.3, 113.8, 112.4, 107.9, 56.7, 51.1, 18.7; IR(cm ${ }^{-1}$ ): v 3414, 3062, 2924, 1709, 1658, 1509, 1479, 1288, 710; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{NO}_{5}{ }^{+}, 428.1492$, found 428.1488 .

N-(1-(4-(3-((2-(4-ethoxyphenyl)-2-methylpropoxy)methyl)phenoxy)phenyl)-2-oxo-2phenylethyl)benzamide (40c)


According to procedure A , the title product 40c (31.3 mg ) was isolated by column chromatography (PE : $\mathrm{EA}=7: 1$ ) as a white amorphous solid in $51 \%$ yield.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 8.01(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.82(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.98(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.94-6.85(\mathrm{~m}, 4 \mathrm{H}), 6.72(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~s}, 2 \mathrm{H})$, $4.11-4.04(\mathrm{~m}, 1 \mathrm{H}), 4.00-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 2 \mathrm{H}), 1.44(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~d}$, $J=4.0 \mathrm{~Hz}, 6 \mathrm{H}$ ); ${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 196.3,166.5,157.2,157.1,154.3$, $140.9,140.1,134.9,134.4,133.1,131.5,130.1,129.7,129.5,128.8,128.5,128.4,128.3$, $127.9,127.3,127.1,124.8,123.2,121.9,118.9,117.6,117.5,111.7,80.1,72.7,64.0$, 55.6, 38.6, 26.1, 26.0, 14.8; IR (cm ${ }^{-1}$ ): v 3436, 2963, 1693, 1658, 1581, 1484, 1446, 1252, 690; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{40} \mathrm{H}_{40} \mathrm{NO}_{5}{ }^{+}, 614.2901$, found 614.2878 .

N-(1-(9-(4-bromophenyl)-9H-carbazol-3-yl)-2-oxo-2-phenylethyl)benzamide (41c)


According to procedure A , the title product $41 \mathrm{c}(34.2 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=10: 1$ ) as a white amorphous solid in $61 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta$ $8.24(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.55(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.34(\mathrm{~m}, 7 \mathrm{H}), 7.29(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 3 \mathrm{H}), 6.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 196.0, 166.4, 141.0, $140.3,136.4,134.3,134.0,133.7,133.1,131.7,130.1,129.3,129.1,128.7,128.6,128.5$, $128.4,127.2,126.5,126.4,124.1,123.0,121.1,120.6,120.5,120.4,110.4,109.6,59.2$; IR (cm-1): v 3411, 2923, 1685, 1650, 1494, 1233, 1183, 1069, 711; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O}_{2}^{+}, 559.1015$, found 559.1008.

N-(1-(9-(4'-(9H-carbazol-9-yl)-[1,1'-biphenyl]-4-yl)-9H-carbazol-3-yl)-2-oxo-2-
phenylethyl)benzamide (42c)


According to procedure A , the title product $\mathbf{4 2 c}(41.2 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=7: 1$ ) as a white amorphous solid in $57 \%$ yield. ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 8.28(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $8.11(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.90-7.86(\mathrm{~m}, 7 \mathrm{H}), 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.58(\mathrm{~m}$, $3 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 9 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 3 \mathrm{H}), 6.97(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 196.0,166.4,141.2,140.8,140.6,139.5,139.1$, $137.3,136.8,134.4,134.1,133.7,131.7,129.3,128.9,128.7,128.5,128.5,128.4,127.5$, $127.4,127.4,127.2,126.5,126.3,126.0,124.1,123.5,123.1,120.6,120.5,120.4,120.1$, 110.7, 109.9, 109.8, 59,2; IR ( $\mathbf{c m}^{-1}$ ): v 3420, 2923, 1658, 1600, 1505, 1451, 1334, 1231, 749; HRMS: $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{51} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}, 722.2802$, found 722.2815 .

2,5-diphenyl-4-(p-tolyl)oxazole (1d)


According to procedure B , the title product $\mathbf{1 d}(29.8 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=100: 1$ ) as yellow oil in $96 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{5 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta 8.14(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.66$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{q}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.30(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H})$. This is a known compound ${ }^{4}$.

4-(4-(methylthio)phenyl)-2,5-diphenyloxazole (2d)


According to procedure B , the title product $\mathbf{2 d}(27.8 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=100: 1$ ) as yellow oil in $81 \%$ yield. ${ }^{1} \mathbf{H}$ NMR ( $500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 8.15(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.69-7.65(\mathrm{~m}, 4 \mathrm{H})$, $7.50-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}$ ), 2.52 (s, 3H); ${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 160.1,145.4,138.7,136.3,130.8$, 130.3, 129.2, 129.0, 128.7, 128.6, 128.5, 128.4, 127.3, 126.6, 126.4, 15.6; IR ( $\mathbf{c m}^{-1}$ ): v 3052, 1726, 1603, 1501, 1326, 1094, 964, 766; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{NOS}^{+}, 344.1104$, found 344.1116.

## 2,5-diphenyl-4-(4-(phenylthio)phenyl)oxazole (3d)



According to procedure B, the title product 3d ( 30.5 mg ) was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=100: 1$ ) as yellow oil in $74 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 8.14(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.67$ (d, $J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.47(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.35-7.31(\mathrm{~m}$, $5 \mathrm{H}), 7.27(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 160.2,145.7,136.1$, $136.0,135.1,131.4,131.1,130.7,130.4,129.2,128.8,128.8,128.7,128.7,128.6,127.3$, 127.2, 126.6, 126.4; IR (cm ${ }^{-1}$ ): v 3058, 1701, 1589, 1249, 1083, 966, 690; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{NOS}^{+}, 406.1260$, found 406.1249.

4-(4-methoxyphenyl)-2,5-diphenyloxazole (4d)
Ph According to procedure B, the title product $4 \mathrm{~d}(25.5 \mathrm{mg})$ was isolated by column chromatography $(\mathrm{PE}: \mathrm{EA}=100: 1)$ as a white amorphous solid in $78 \%$ yield. ${ }^{1} \mathbf{H}$ NMR ( $\mathbf{5 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta 8.15(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.69-7.65$ (m, 4H), 7.49 - $7.47(\mathrm{~m}, 3 \mathrm{H}), 7.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.95$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$. This is a known compound ${ }^{4}$.

## 4-(2,3-dihydrobenzofuran-5-yl)-2,5-diphenyloxazole (5d)



According to procedure B , the title product $\mathbf{5 d}(25.8 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=100: 1$ ) as colorless oil in $76 \%$ yield. ${ }^{1} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 8.15(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ( $\left.\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 160.2,159.9,144.6,137.0,130.2,129.2,128.7,128.6$, $128.3,128.2,127.5,127.4,126.4,126.3,125.0,124.8,109.3,71.5,29.6$; IR ( $\mathbf{c m}^{-1}$ ): v 2922, 1696, 1604, 1486, 1238, 1105, 981, 699; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{NO}_{2}{ }^{+}, 340.1332$, found 340.1317.

4-(benzo[d][1,3]dioxol-5-yl)-2,5-diphenyloxazole (6d)


According to procedure B , the title product $\mathbf{6 d}(28.7 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=100: 1$ ) as colorless oil in $84 \%$ yield. ${ }^{1} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 8.14(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}$, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.23(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl $\mathbf{C D}_{3}$ ) 159.9, 147.8, 147.6, 145.0, 136.5, 130.3, 129.0, 128.8, 128.7, 128.5, 127.3, 126.5, 126.4, 126.3, 122.1, 108.7, 108.6, 101.2; IR (cm ${ }^{-1}$ ): v 1731, 1656, 1481, 1447, 1238, 1102, 1039, 879, 704; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{NO}_{3}{ }^{+}, 342.1124$, found 342.1119 .

4-(7,8-dihydronaphthalen-2-yl)-2,5-diphenyloxazole (7d)


According to procedure B , the title product $7 \mathrm{~d}(26.9 \mathrm{mg})$ was isolated by column chromatography $(\mathrm{PE}: \mathrm{EA}=100: 1)$ as a white amorphous
solid in $77 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 8.14(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, 2H), 7.73 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.36(\mathrm{~m}, 7 \mathrm{H}), 7.21-7.10(\mathrm{~m}, 4 \mathrm{H}), 2.92(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 2.65$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 159.9,145.8,137.3$, $135.2,134.2,130.8,130.3,129.3,128.8,128.7,128.6,128.5,127.5,127.4,127.3,127.2$, 126.7, 126.6, 126.5, 28.1, 25.7; IR (cm ${ }^{-1}$ ): v 2925, 1691, 1599, 1486, 1448, 1241, 1109, 690; HRMS: $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{NO}^{+}, 350.1539$, found 350.1548 .

4-(2,4-dimethoxy-3-methylphenyl)-2,5-diphenyloxazole (8d)


According to procedure B , the title product $\mathbf{8 d}(29.0 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=75: 1$ ) as a white amorphous solid in $78 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta 8.18(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{q}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.31(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.28-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 159.5,159.4,157.7,146.1,134.3,130.2,128.9,128.8$, $128.7,128.5,127.9,127.5,126.4,125.1,120.4,119.0,106.3,61.1,55.7,9.07$; IR ( $\mathbf{c m}^{-}$
${ }^{1}$ ): $v 2933,1603,1486,1447,1271,1110,703$; HRMS: $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NO}_{3}{ }^{+}, 372.1594$, found 372.1585 .

2,5-diphenyl-4-(2,3,4-trimethoxyphenyl)oxazole (9d)


According to procedure B , the title product $9 \mathbf{~}(33.0 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=75: 1$ ) as a white amorphous solid in $85 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 8.17(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.56$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.46$ (m, 3H), 7.32 (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.27$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H})$, $3.91(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 159.6,156.4,152.3,146.3$, $142.6,133.4,130.2,128.9,128.7,128.4,127.9,127.5,126.4,125.7,125.3,119.9,107.6$, 61.3, 61.0, 56.1; IR (cm-1): v 1634, 1487, 1412, 1384, 1293, 1101, 1021, 769; HRMS: $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NO}_{4}{ }^{+}, 388.1543$, found 388.1544.

## 4-(2,5-dimethylthiophen-3-yl)-2,5-diphenyloxazole (10d)



According to procedure B , the title product $\mathbf{1 0 d}(30.5 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=200: 1$ ) as yellow oil in $92 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta 8.15(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{q}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.37$ (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta 159.7$, $145.9,136.6,135.9,132.5,130.3,129.0,128.8,128.7,128.6,128.0,127.4,126.5,126.4$, 125.2, 15.2, 12.2; IR (cm ${ }^{-1}$ ): v 1697, 1599, 1486, 1260, 1136, 1027, 805, 699; HRMS: $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NOS}^{+}, 332.1104$, found 332.1106.

5-(4-chlorophenyl)-4-(4-(methylthio)phenyl)-2-phenyloxazole (11d)

$\mathrm{Hz}, 2 \mathrm{H}$ ), 2.53 ( $\mathrm{s}, 3 \mathrm{H}$ ); ${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 2 5} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$ ) $\delta 160.1,145.3,136.2,130.3$, 129.2, 128.9, 128.7, 128.7, 128.5, 128.4, 127.3, 126.5, 126.4, 126.3, 125.0, 15.6. IR (cm ${ }^{-1}$ ): v 3448, 2923, 1700, 1589, 1487, 1249, 1093, 718; HRMS: m/z: [M+H] ${ }^{+}$ calculated for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{ClNOS}^{+}, 378.0714$, found 378.0707.

4-(4-(methylthio)phenyl)-5-(naphthalen-2-yl)-2-phenyloxazole (12d)


According to procedure B , the title product $\mathbf{1 2 d}(29.6 \mathrm{mg})$ was isolated by column chromatography $(\mathrm{PE}: \mathrm{EA}=100: 1)$ as yellow oil in $75 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ ( ~} \mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta 8.20(\mathrm{~s}, 3 \mathrm{H}), 7.85-7.82$ $(\mathrm{m}, 3 \mathrm{H}), 7.70(\mathrm{t}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.52-7.50(\mathrm{~m}, 5 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}$ ), $2.53(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ( $\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 160.3,145.5,138.8,138.6,133.2$, 133.1, 130.4, 129.2, 128.8, 1285, 128.4, 128.3, 127.7, 127.3, 126.7, 126.6, 126.5, 126.4, 126.3, 125.7, 124.1, 15.6; IR (cm ${ }^{-1}$ ): v 2924, 1690, 1686, 1487, 1241, 1082, 965, 766, 691; HRMS: $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{NOS}^{+}, 394.1260$, found 394.1254.

5-chloro-2-(2,4-dichlorophenoxy)-4-(2,5-diphenyloxazol-4-yl)phenol (13d)


According to procedure B, the title product 13d ( 22.4 mg ) was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=10: 1$ ) as a white amorphous solid in $44 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $8.14(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.49(\mathrm{~m}$, $5 \mathrm{H}), 7.39-7.34$ (m, 2H), 7.29 - 7.28 (m, 1H), 7.15 (s, 1H), $7.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 167.2,151.9,151.0,143.5,140.4,133.8,132.3,130.5$, $129.8,129.5,128.9,128.8,128.7,128.1,127.5,126.5,126.4,126.3,124.6,121.0,119.9$, 114.4, 113.1; IR (cm ${ }^{-1}$ ): v 3609, 3061, 1649, 1605, 1473, 1388, 892, 769, 705; HRMS: $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{Cl}_{3} \mathrm{NO}_{3}{ }^{+}, 508.0269$, found 508.0285.

## 2,5-diphenyl-4-(p-tolyl)thiazole (14d)

According to procedure C , the title product $\mathbf{1 4 d}(26.5 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=20: 1$ ) as a white amorphous solid in $81 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.01$
(d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.35(\mathrm{~m}, 8 \mathrm{H}), 7.18$ (d, $J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H})$. This is a known compound ${ }^{5}$.

4-(4-(methylthio)phenyl)-2,5-diphenylthiazole (15d)


According to procedure C , the title product $\mathbf{1 5 d}(26.0 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=25: 1$ ) as a white amorphous solid in $72 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 8.01$ (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.40(\mathrm{~m}, 6 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 2.35(s, 3H); ${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z , ~ C D C l} 3$ ) $\delta 165.3,150.9,137.6,133.7,132.4,132.2$, 132.1, 129.9, 129.6, 129.0, 128.9, 128.7, 128.3, $128.1,126.4,21.3$; IR (cm${ }^{-1}$ ): v 1598, 1477, 1442, 1253, 1181, 1071, 980, 759; HRMS: m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{NS}_{2}{ }^{+}, 360.0875$, found 360.0871 .

2,5-diphenyl-4-(4-(phenylthio)phenyl)thiazole (16d)


According to procedure C, the title product $\mathbf{1 6 d}(25.7 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=50: 1$ ) as a white amorphous solid in $61 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 8.01$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.31(\mathrm{~m}, 8 \mathrm{H})$, 7.29 - 7.24 (m, 4H); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z , ~ C D C l} 3$ ) $\delta \mathbf{1 6 5 . 6 , 1 4 9 . 9 , ~ 1 3 5 . 6 , ~ 1 3 5 . 3 , ~ 1 3 3 . 6 , ~}$ 133.5, 133.3, 131.9, 131.4, 130.4, 130.1, 129.7, 129.6, 129.2 , 128.9, 128.8, 128.3, 127.2, 126.4; IR (cm ${ }^{-1}$ ): v 3057, 1637, 1474, 1439, 1260, 980, 760, 668; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{NS}_{2}{ }^{+}, 422.1031$, found 422.1032.

4-(4-methoxyphenyl)-2,5-diphenylthiazole (17d)


According to procedure C , the title product $\mathbf{1 7 d}(25.4 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=20: 1$ ) as a white amorphous solid in $74 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 8.01$ (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 3 \mathrm{H})$, $\left.6.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R ~ ( 1 0 0 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta 165.3,159.3$,
$150.6,133.7,132.3,131.8,130.4,129.9,129.6,128.9,128.8,128.1,127.6,126.4,113.7$, 55.3; IR (cm ${ }^{-1}$ ): v 3060, 1609, 1508, 1478, 1249, 1175, 1031, 761, 694; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{NOS}^{+}, 344.1104$, found 344.1105.

4-(2,3-dihydrobenzofuran-5-yl)-2,5-diphenylthiazole (18d)


According to procedure C, the title product $\mathbf{1 8 d}(22.4 \mathrm{mg})$ was isolated by column chromatography $(\mathrm{PE}: \mathrm{EA}=25: 1)$ as a white amorphous solid in $63 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 8.01(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.19(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}(\mathbf{1 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 165.2,159.9,151.0,133.7,132.4,131.5,129.9,129.5,129.3,128.9,128.7$, 127.9, 127.5, 127.1, 126.4 ,125.9, 109.0, 71.4, 29.6 ; IR ( $\mathbf{c m}^{-1}$ ): v 3059, 1612, 1473, 1442, 1233, 1169, 982, 760; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{NOS}^{+}$, 356.1104, found 356.1111 .

4-(benzo[d][1,3]dioxol-5-yl)-2,5-diphenylthiazole (19d)


According to procedure C, the title product 19d ( 26.8 mg ) was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=25: 1$ ) as a white amorphous solid in $75 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$ ) $\delta 8.01(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.45-7.34(\mathrm{~m}, 8 \mathrm{H}), 7.10-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 2 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 165.3,150.3,147.5,147.3,133.6,132.1,130.0,129.6$, 129.0, 128.9, 128.8, 128.2, 126.7, 126.4, 123.1, 109.6, 108.2, 101.0; IR (cm ${ }^{-1}$ ): v 3061, 1613, 1475, 1443, 1234, 1038, 760, 690; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{NO}_{2} \mathrm{~S}^{+}, 358.0896$, found 358.0897 .

4-(7,8-dihydronaphthalen-2-yl)-2,5-diphenylthiazole (20d)


According to procedure C, the title product $\mathbf{2 0 d}(26.7 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=50: 1$ ) as a white amorphous solid in $73 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.00(\mathrm{~d}, J=6.8 \mathrm{~Hz}$,

2H), $7.53-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 6 \mathrm{H}), 7.14-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.02-7.00(\mathrm{~m}$, $2 \mathrm{H}), 2.84(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 165.1, 151.6, 135.1, 134.4, 133.9, 133.6, 132.9, 132.4, 130.0, 129.6, 129.6, 128.9, 128.6, 128.2, 127.6, 127.1, 126.7, 126.5, 126.4, 28.3, 26.5; IR (cm ${ }^{-1}$ ): v 2960, 1718, 1617, 1486, 1233, 1107, 981, 821, 695; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{NS}^{+}$, 366.1311 found 366.1303 .

4-(2,4-dimethoxy-3-methylphenyl)-2,5-diphenylthiazole (21d)

MeO OMe 21d
According to procedure C, the title product 21d ( 26.4 mg ) was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=20: 1$ ) as a white amorphous solid in $68 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.01$ (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.14$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta 164.5,159.0,157.6,148.9,134.3,133.8,132.3,129.8$, 129.0, 128.8, 128.5, 128.4, 127.6, 126.4, 121.6, 120.1, 106.0, 60.9, 55.6, 9.1; IR (cm ${ }^{-}$ ${ }^{1}$ ): v 3058, 1600, 1474, 1403, 1270, 1228, 1109, 760, 690; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}^{+}, 388.1366$, found 388.1367 .

2,5-diphenyl-4-(2,3,4-trimethoxyphenyl)thiazole (22d)


According to procedure C , the title product 22d ( 30.3 mg ) was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=20: 1$ ) as a white amorphous solid in $75 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.00$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}(\mathbf{1 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 164.8,154.1,152.1,148.1,142.5,134.5,133.8,132.4,129.8,128.8,128.5$, 128.5, 127.7, 126.4, 126.0, 122.4, 107.3, 60.9, 60.8, 56.0; IR (cm ${ }^{-1}$ ): v 3062, 1680, 1579, 1470, 1352, 1150, 709, 687; HRMS: $m / z:[M+H]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}^{+}$, 404.1315, found 404.1318.


According to procedure C, the title product 23d ( 28.5 mg ) was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=50: 1$ ) as a white amorphous solid in $82 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 8.00(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, 2H), $7.46-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ( $\left.\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 165.0,147.1,135.9,135.5,133.8,133.7,132.3,131.6$, 129.9, 128.8, 128.7, 128.6, 127.8, 127.0, 126.4, 15.2, 14.1; IR (cm ${ }^{-1}$ ): v 3060, 1692, 1598, 1442, 1383, 1030, 760, 690; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NS}_{2}{ }^{+}$, 348.0875 , found 348.0878 .

5-chloro-2-(2,4-dichlorophenoxy)-4-(2,5-diphenylthiazol-4-yl)phenol (24d)


According to procedure C, the title product $\mathbf{2 4 d}(21.0 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=7: 1$ ) as a white amorphous solid in $40 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\left.\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 7.94 (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.23-$ $7.21(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.73(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $100 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta 163.9,160.0,150.8,147.0,142.1,134.0,132.8,130.8,130.6$, $130.3,129.6,129.3,128.8,128.6,128.4,128.1,127.0,126.5,126.0,125.9,125.3,122.3$, 120.7; IR (cm ${ }^{-1}$ ): v 3605, 3060, 1609, 1478, 1441, 1249, 1175, 761; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{Cl}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+}, 524.0040$, found 524.0032.

## 2,5-diphenyl-4-(p-tolyl)-1H-imidazole (25d)



According to procedure C , the title product $\mathbf{2 5 d}(29.2 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=5: 1$ ) as a white amorphous solid in $94 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta 7.91$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.58 (d, $J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.29(\mathrm{~m}, 8 \mathrm{H}), 7.16(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H})$. This is a known compound ${ }^{6}$.

4-(4-(methylthio)phenyl)-2,5-diphenyl-1H-imidazole (26d)


According to procedure C, the title product 26d ( 25.5 mg ) was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=5: 1$ ) as a white amorphous solid in $74 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.84$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.28(\mathrm{~m}, 8 \mathrm{H}), 7.15-7.13(\mathrm{~m}, 2 \mathrm{H})$, $2.46(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 146.1,137.4,129.7,128.7,128.6,128.5$, $128.3,128.1,127.8,127.4,126.3,125.3,15.6$; IR (cm ${ }^{-1}$ ): v $3414,3058,1602,1486$, 1404, 1261, 1098, 772, 695; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{~S}^{+}, 343.1263$, found 343.1264.

2,5-diphenyl-4-(4-(phenylthio)phenyl)-1H-imidazole (27d)


According to procedure C , the title product $\mathbf{2 7 d}(35.2 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=5: 1$ ) as a white amorphous solid in $87 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.85$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.41-7.27(\mathrm{~m}, 11 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ( $\left.\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 146.2,131.1,130.9,129.7,129.2,128.8,128.7,128.3$, 127.9, 127.7, 127.1, 125.3; IR (cm ${ }^{-1}$ : v 3415, 3059, 1649, 1479, 1445, 1261, 1089, 1026, 692; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{~S}^{+}, 405.1420$, found 405.1422 .

4-(4-methoxyphenyl)-2,5-diphenyl-1H-imidazole (28d)
According to procedure C, the title product 28d ( 25.5 mg ) was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=5: 1$ ) as a white amorphous solid in $78 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.92$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.31(\mathrm{~m}, 8 \mathrm{H}), 6.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$. This is a known compound ${ }^{6}$.

4-(2,3-dihydrobenzofuran-5-yl)-2,5-diphenyl-1H-imidazole (29d)
 According to procedure C, the title product 29d ( 24.8 mg ) was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=5: 1$ ) as a white amorphous solid in $73 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta 7.87(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$,
7.54 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.28$ (m, 6H), $7.25-7.19$ (m, 2H), 6.72 (d, $J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.57(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 159.7, 145.6, 129.9, 128.8, 128.6, 128.5, 128.1, 127.5, 127.4, 127.1, 125.2, 124.8, 109.3, 71.4, 29.6; IR (cm ${ }^{-1}$ ): v 3421, 3059, 1650, 1488, 1232, 1107, 982, 772, 696; HRMS: $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}^{+}, 339.1492$, found 339.1493.

4-(benzo[d][1,3]dioxol-5-yl)-2,5-diphenyl-1H-imidazole (30d)


According to procedure C , the title product $\mathbf{3 0 d}(32.0 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=5: 1$ ) as a white amorphous solid in $94 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$ ) $\delta 7.89(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.54(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$ ) $\delta 147.7,147.0,145.7,129.8,128.9,128.8,128.6,127.8,127.4,125.2$, 121.7, 108.6, 108.5, 101.1; IR (cm-1): v 3422, 3061, 1604, 1483, 1460, 1231, 1038, 696; HRMS: $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}, 341.1284$, found 341.1280.

4-(7,8-dihydronaphthalen-2-yl)-2,5-diphenyl-1H-imidazole (31d)


According to procedure C, the title product 31d ( 28.6 mg ) was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=5: 1$ ) as a white amorphous solid in $82 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 7.88(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.31(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 3 \mathrm{H}), 7.00$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 2.81(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDC13) $\delta$ 145.7, 134.9, 134.4, 129.8, 128.9, 128.8, 128.4, 128.3, 127.8, 127.5, 127.3, 127.0, 126.6, 126.3, 125.4, 125.3, 125.2; IR (cm ${ }^{-1}$ ): v 3442, 2922, 1641, 1485, 1446, 1231, 1108, 1038, 695; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{2}{ }^{+}, 349.1699$, found 349.1693.

4-(2,4-dimethoxy-3-methylphenyl)-2,5-diphenyl-1H-imidazole (32d)


According to procedure C , the title product 32d ( 29.0 mg ) was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=5: 1$ ) as a white amorphous solid in $78 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$ ) $\delta 7.91$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.69$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.29(\mathrm{~m}$, $3 \mathrm{H}), 7.22(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83$ $(\mathrm{s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 158.6,156.1145 .5$, 130.1, 128.9, 128.6, 128.5, 128.3, 127.8, 126.8, 125.1, 120.2, 106.5, 60.5, 55.7, 8.9; IR ( $\mathbf{c m}^{-1}$ ): $v 3423,3061,1604,1484,1407,1270,1110,774,695$; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}, 371.1759$, found 371.1754 .

2,5-diphenyl-4-(2,3,4-trimethoxyphenyl)-1H-imidazole (33d)
According to procedure C , the title product $\mathbf{3 3 d}(32.5 \mathrm{mg}$ ) was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=5: 1$ ) as a white amorphous solid in $84 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 7.92$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.71-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 3 \mathrm{H})$, $7.39-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H})$, $3.87(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 153.5,150.9,145.4,142.6$, 130.1, 128.9, 128.7, 128.4, 128.0, 127.0, 125.2, 125.0, 107.9, 61.3, 61.1, 56.0; IR (cm ${ }^{-}$ ${ }^{1}$ ): v 3415, 3060, 1655, 1594, 1507, 1327, 1273, 696; HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}, 387.1703$, found 387.1707.

4-(2,5-dimethylthiophen-3-yl)-2,5-diphenyl-1H-imidazole (34d)


According to procedure C , the title product $\mathbf{3 4 d}(30.0 \mathrm{mg})$ was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=7: 1$ ) as a white amorphous solid in $91 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\left.\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l 3}\right) \delta 8.16(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.62 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.47$ (d, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ( $\left.\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l} 3\right) \delta$ $159.7,145.9,136.6,135.9,132.5,130.3,129.0,128.8,128.7,128.6,128.0,127.3,126.5$, 126.4, 125.2, 15.2, 14.2; IR (cm-1): v 3448, 2957, 1654, 1460, 1384, 1244, 773, 695;

HRMS: m/z: $[\mathrm{M}+\mathrm{H}]+$ calculated for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{~S}+$, 331.1264, found 331.1266.

5-chloro-2-(2,4-dichlorophenoxy)-4-(2,5-diphenyl-1H-imidazol-4-yl)phenol (35d)


According to procedure C, the title product 35d ( 22.9 mg ) was isolated by column chromatography ( $\mathrm{PE}: \mathrm{EA}=5: 1$ ) as a white amorphous solid in $45 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $7.98(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.81-7.79(\mathrm{~m}, 3 \mathrm{H}), 7.63-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.52(\mathrm{~m}, 3 \mathrm{H})$, 7.38 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta 163.4,158.0,141.5$, 136.9, 134.0, 132.8, 132.0, 131.2, 130.8, 130.1, 129.6, 129.1, 128.5, 128.0, 127.8, 127.1, 126.1, 125.9, 125.9, 125.8, 125.8, 125.3, 122.6; IR (cm-1): v 3605, 3415, 3063, 1647, 1473, 1256, 1099, 695; HRMS: m/z: [M+H] calculated for $\mathrm{C}_{2} 7 \mathrm{H}_{18} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$, 507.0434, found 507.0428 .

## 8. References

1 T. Wang, Z. Tang, H. Luo, Y. Tian, M. Xu, Q. Lu and B. Li, Org. Lett., 2021, 23, 6293-6298.

2 V. Nemec, M. Hylsovp, L. Maier, J. Flegel, S. Sievers, S. Ziegler, M. Schrçder, B.T. Berger, A. Chaikuad, B. Valc ${ }^{\text {cíkov}}$, S, Uldrijan, S. Dr $\mu$ pela, K. Souček, H. Waldmann, S. Knapp and K. Paruch, Angew. Chem., Int. Ed., 2019, 58, 1062-1066.
3 X. Su, H. Huang, Y. Yuan and Y. Li, Angew. Chem., Int. Ed., 2017, 56, 1338-1341.
4 T.-T. Zeng, J. Xuan, W. Ding, K. Wang, L.-Q. Lu and W.-J. Xiao, Org. Lett., 2015, 17, 4070-4073.

5 S. Tani, T. N. Uehara, J. Yamaguchi and K. Itami, Chem. Sci. 2014, 5, 123-135.
6 U. K. Das, L. J. W. Shimon and D. Milstein, Chem. Commun. 2017, 53, 13133-13136.
7 H. Hu, Y. Liu, L. Lin, Y. Zhang, X. Liu and X. Feng, Angew. Chem., Int. Ed., 2016, 55, 10098-10101.

## 9. Copies of NMR spectra



${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




$\stackrel{\wedge}{\mathrm{m}} \mathrm{O}_{\mathrm{O}}^{\mathrm{o}}$ Nべ | \# |
| :--- |
| 0 | $\infty$


${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


[^0]
${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )





## N人

$\infty$

${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


N N N J


## mo

人N人゚ำ
${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{13} \mathrm{C}$ NMR spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


[^1]
${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



${ }^{13} \mathrm{C}$ NMR spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{13} \mathrm{C}$ NMR spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


[^2]
${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


[^3]
${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



$\stackrel{\bar{N}}{\substack{N}}$

${ }^{13} \mathrm{C}$ NMR spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


[^4]
## 



${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )





${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



${ }^{13} \mathrm{C}$ NMR spectrum（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）



${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




## $\stackrel{\wedge}{\mathrm{N}} \mathrm{O}_{\mathrm{O}}^{\infty} \stackrel{\circ}{\circ}$ <br> 슨 べN N


${ }^{13} \mathrm{C}$ NMR spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


[^5]
${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




${ }^{13} \mathrm{C}$ NMR spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


[^6]
${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



${ }^{13} \mathrm{C}$ NMR spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


15c
H NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




15c
${ }^{13} \mathrm{C}$ NMR spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


[^7]




${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



[^8]


${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


ద

${ }^{13} \mathrm{C}$ NMR spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



[^9]$\begin{array}{cc}\infty & \infty \\ \underset{\sim}{0} & \infty \\ \sim & \sim \\ \sim & \sim\end{array}$

| $\circ$ |
| :--- |


${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{13} \mathrm{C}$ NMR spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



${ }^{13} \mathrm{C}$ NMR spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


[^10]
${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


[^11]

${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{13} \mathrm{C}$ NMR spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


[^12]

${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )





${ }^{13} \mathrm{C}$ NMR spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


¢ n
8
8
$i$

28c
${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




## 



${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



${ }^{13} \mathrm{C}$ NMR spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


[^13]


$\angle O E^{\prime}$ Z


1

H NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


[^14]


${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{13} \mathrm{C}$ NMR spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


N N N N N


${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz},(\mathrm{CD} 3)_{2} \mathrm{CO}\right)$


${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


[^15]
${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



${ }^{13} \mathrm{C}$ NMR spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



| $\circ$ |
| :--- |
| 0 |
| $\infty$ |
| $\infty$ |


${ }^{13} \mathrm{C}$ NMR spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


[^16]
$\infty \infty$ NNNNNNNNNNN
$\stackrel{\circ}{\circ}$
$\stackrel{N}{\sim}$

| $\circ$ |
| :--- |


${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




${ }^{13} \mathrm{C}$ NMR spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


[^17]

N~~ か下

${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$






[^18]
${ }^{1} \mathrm{H}$ NMR spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

$-2.517$

${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


$\stackrel{N}{6}$
$\stackrel{\oplus}{\oplus}$


2d
${ }^{13} \mathrm{C}$ NMR spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{1} \mathrm{H}$ NMR spectrum ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




${ }^{13} \mathrm{C}$ NMR spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


[^19]

${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




No



[^20]


${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




${ }^{13} \mathrm{C}$ NMR spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )
77.318
77.000
76.683 ${ }_{77} 7$

[^21]
${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




${ }^{13} \mathrm{C}$ NMR spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{1} \mathrm{H}$ NMR spectrum（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

 مウN

$\stackrel{\rightharpoonup}{\circ}$
$\stackrel{\circ}{\circ}$

${ }^{13} \mathrm{C}$ NMR spectrum（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）


$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


مー

NN

${ }^{13} \mathrm{C}$ NMR spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



${ }^{13} \mathrm{C}$ NMR spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

[^22]

$\stackrel{+}{\circ}$
$\stackrel{\sim}{\Gamma}$

${ }^{13} \mathrm{C}$ NMR spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


$\stackrel{\text { ONOMN }}{\sim}$

${ }^{13} \mathrm{C}$ NMR spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

[^23]
${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{13} \mathrm{C}$ NMR spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


| $\circ$ |
| :--- |
| $\square$ |
| + |

$\stackrel{\downarrow}{\top}$
8

${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

$N$
$N$
$N$
8
0
0

${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{13} \mathrm{C}$ NMR spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


|  |  |
| :---: | :---: |
|  |  |
|  |  |



16d
${ }^{13} \mathrm{C}$ NMR spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



##  $\infty_{0} \infty$


${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




| $\wedge 8^{m}{ }_{0}^{\infty}$ | $\stackrel{\sim}{\sim}$ |
| :---: | :---: |
| ल○¢ | $\omega$ |
| へべャ | N |
| $\xrightarrow{+}$ |  |


${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



${ }^{13} \mathrm{C}$ NMR spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


## 



$\stackrel{\stackrel{\circ}{7}}{\stackrel{\circ}{1}}$

${ }^{13} \mathrm{C}$ NMR spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




[^24]


${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$






${ }^{13} \mathrm{C}$ NMR spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

$\overline{6}$
$\underset{\sim}{1}$
8
0
$i$
$i$

${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{13} \mathrm{C}$ NMR spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

[^25]
${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




H NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


응응운
NiN N NiN

${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ )



${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


| 생 ${ }^{\circ}$ |  | $\cdots{ }_{\sim}^{\infty}$ | $\stackrel{\infty}{\infty}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| -i |  | $\stackrel{\text { mo }}{\substack{\text { ¢ }}}$ | $\stackrel{+}{\circ}$ | $\stackrel{\square}{\infty}$ |
| 「 |  | へNo | $\bigcirc$ | $\infty$ |


${ }^{13} \mathrm{C}$ NMR spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{1} \mathrm{H}$ NMR spectrum ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



${ }^{13} \mathrm{C}$ NMR spectrum ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

(os)
${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



${ }^{13} \mathrm{C}$ NMR spectrum ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



${ }^{1} \mathrm{H}$ NMR spectrum（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

 が



|  |  |
| :---: | :---: |


${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


8
0
0

$0.79 \mathrm{H}+0.21 \mathrm{D}$
${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



[^0]:    $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl} & (\mathrm{pran})\end{array}$

[^1]:    $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

[^2]:    $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100\end{array}$

[^3]:    $\begin{array}{llllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^4]:    $\begin{array}{llllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^5]:    $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

[^6]:    $\begin{array}{llllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^7]:    $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

[^8]:    

[^9]:    

[^10]:    $\begin{array}{llllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^11]:    $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

[^12]:    $\begin{array}{lllllllllllllll}1 & 1 & 1 \\ 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

[^13]:    

[^14]:    $\begin{array}{llllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^15]:    

[^16]:    $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ & & & \\ \text { (ppm) }\end{array}$

[^17]:    $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

[^18]:    $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

[^19]:    $\begin{array}{llllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^20]:    $\begin{array}{lllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^21]:    $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100\end{array}$

[^22]:    $\begin{array}{lllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

[^23]:    $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

[^24]:    $\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^25]:    $\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

